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ABSTRACT

Previous studies showed that random error can explain overconfidence effects typically
observed in the literature. One of these studies concluded that, after accounting for
random error effects in the data, there is little support for cognitive-processing biases in
confidence elicitation. In this paper, we investigate more closely the random error
explanation for overconfidence. We generated data from four models of confidence and
then estimated the magnitude of random error in the data. Our results show that, in
addition to the true magnitude of random error specified in the simulations, the error
estimates are influenced by important cognitive-processing biases in the confidence
elicitation process. We found that random error in the response process can account for
the degree of overconfidence found in calibration studies, even when that overconfi-
dence is actually caused by other factors. Thus, the error models say little about whether
cognitive biases are present in the confidence elicitation process. Copyright # 2008
John Wiley & Sons, Ltd.
key words overconfidence; response error; confidence calibration; probability

judgment; cognitive bias
INTRODUCTION

Confidence, accuracy, and their relationship are immensely popular topics in judgment research. Part of this

popularity comes from the fact that confidence judgments are intuitive: people usually have an idea of what

confidence is, and how to express confidence, before stepping foot in a laboratory. A related part of this

popularity comes from the fact that people frequently use confidence judgments, either implicitly or

explicitly, in many applications such as medical diagnosis (Arkes et al., 1995), eyewitness identification

(Wells, 1981), and meteorology (O’Hagan et al., 2006, who also discuss a number of other applications).

From the researchers’ perspective, the correspondence between confidence and accuracy is straightforward to

assess, which makes confidence research more accessible. For example, if a decision maker gives an average
kle, Department of Psychology, Wichita State University, 1845 Fairmount Box 34, Wichita, KS
wichita.edu

& Sons, Ltd.



E. C. Merkle et al. Biases in Confidence 429
confidence of x% to a set of items, x% of those items should be correct. The further that accuracy strays from

confidence, the more poorly calibrated is the decision maker.

Perhaps the most pervasive and well-known phenomenon on the literature on confidence calibration is that

of overconfidence: confidence tends to exceed accuracy. In the last several years, a number of studies have

called into question this overconfidence phenomenon. The arguments against overconfidence generally fall in

one of two camps: ecological validity or statistical artifact. The ecological validity arguments (Gigerenzer,

Hoffrage, & Kleinbölting, 1991; Juslin, 1994) typically revolve around experimenters (consciously or

unconsciously) selecting test questions that are not representative of all possible test questions in a

given domain. If there are a large number of trick questions in a test, the argument goes, then judges

will be overconfident because their prior experience in the test domain conflicts with the administered

questions.

Others have proposed that overconfidence should be at least partly dismissed as a statistical artifact (Erev,

Wallsten, & Budescu, 1994; Pfeifer, 1994). These researchers argue that empirical findings are dependent on

the method of analysis or that random error can account for the findings. For example, Erev et al. showed that

the relationship between subjective and objective probability (e.g., between confidence and proportion

correct) can change depending on whether subjective probability is computed as a function of objective

probability or vice versa. They then presented a class of models in which a true, unbiased confidence

judgment is perturbed by random error and showed that these models can produce classic findings in

the overconfidence literature. Taken together, the ecological and statistical validity arguments imply that the

overconfidence phenomenon is not necessarily an interesting topic of study. They suggest that there are no

systematic cognitive biases at work in the confidence elicitation process and that only random error or biased

test items are to blame for observed overconfidence.

Further complicating the situation, overconfidence is not ubiquitous: it is typically reduced or even

reversed for very easy tests, a phenomenon generally known as the hard–easy effect. In its general form, the

hard–easy effect occurs when people exhibit more overconfidence for more difficult sets of questions (and

less overconfidence, or even underconfidence, for easy sets of questions). Lichtenstein and Fischhoff (1977)

uncovered the hard–easy effect, and, to our knowledge, were also the first to address the possibility that the

effect might be a statistical artifact. They tested the possibility that their results could be explained solely in

terms of random error and found that they could not. These researchers also noted the critical implication that

overconfidence did not amount to a simple systematic effect that could, for example, be subtracted out of a

respondent’s judgments (Lichtenstein & Fischhoff, 1980). In other words, if a systematic cognitive bias is

present in the confidence elicitation process, it is not necessarily the case that this bias will translate into a

simple, systematic overconfidence effect.

Other researchers have explored the artifactual and/or ecological contributions to overconfidence in more

detail. For example, Budescu, Wallsten, and Au (1997) used clever experimentation to estimate both

between-item and within-item variability (i.e., error) in confidence judgments. They then used a type of

signal detection model (Wallsten & González-Vallejo, 1994) to examine the magnitude of overconfidence

that would be exhibited by perfectly calibrated judges possessing the same amount of error as was observed in

the real participants. These researchers found that error variability could not account for the full magnitude of

overconfidence that was exhibited by their participants; thus, overconfidence cannot be explained solely by

random error.

In contrast to Budescu et al. (1997), Juslin, Winman, and Olsson (2000) argued that overconfidence and

the hard–easy effect can be attributed almost entirely to ecological and statistical artifacts. These researchers

first compared representatively selected and informally selected general knowledge questions across several

experiments that were matched for difficulty. Representatively selected questions are those that were

randomly chosen from some larger set of potential questions, while informally selected questions are those

that an experimenter explicitly chose. In their examination of these two types of tests, Juslin et al. found half

as much overconfidence for the representatively selected tests as for the informally selected tests. They then
Copyright # 2008 John Wiley & Sons, Ltd. Journal of Behavioral Decision Making, 21, 428–448 (2008)

DOI: 10.1002/bdm



430 Journal of Behavioral Decision Making
corrected the representatively selected data for statistical artifacts, using procedures that bear some similarity

to the Budescu et al. procedure.

Specifically, Juslin et al. (2000) made statistical adjustments using two different procedures: a ‘‘split-

sample’’ procedure devised by Klayman, Soll, González-Vallejo, and Barlas (1999), and a model-based

procedure that is intended to statistically control for random error presumed to arise in the response system.

They found that the hard–easy effect, and hence overconfidence for the difficult tests, was indeed reduced by

their statistical adjustments to the data. Based on these results, they concluded that there is little evidence of

cognitive biases contributing to the overconfidence effect. As summarized by O’Hagan et al. (2006), ‘‘Juslin

et al. (2000) argue vehemently that, when all potential artifacts associated with calibration tasks and

their analysis are taken into account, there is little evidence of anymeaningful cognitive overconfidence bias’’

(p. 82).

In this paper, we focus on the role of random error in the confidence elicitation process, as compared to the

role of systematic biases. Random error effects are unsystematic (and therefore uninteresting), while

systematic biases such as alternative underweighting (e.g., McKenzie, 1997) are interesting research topics

that can potentially be manipulated experimentally. Of specific interest to us is the ability of random error

models to capture, or explain, data produced by other types of models. Most importantly, if estimated random

error parameters change with cognitive biases present in the confidence elicitation process, then we can draw

no conclusions about whether random error or cognitive biases drive miscalibration effects. This issue is

important because it appears to run counter to the model selection literature (e.g., Myung, 2000; Pitt, Myung,

& Zhang, 2002), which tells us to prefer the simplest explanation of a phenomenon. From this perspective, it

is often assumed that random error provides the simplest explanations of psychological phenomena.We show

here that the random error models are flexible enough to explain many calibration data sets, even when the

data sources contain cognitive biases.

Stated differently, model selection research generally focuses on the number of distinct data patterns that a

model can generate. We are as much concerned with the data production process, however, as we are with the

exact data patterns that the model generates. To determine whether error models can capture data from other

models, we follow a general approach employed by Ratcliff, Van Zandt, and McKoon (1995, among others).

We first simulate realistic data from knownmodels and then apply an error estimation procedure (specifically,

the procedure developed by Juslin et al., 2000) to the simulated data. Because we know the data-generating

mechanism for the simulated data, we know exactly how the procedure should perform if it is only estimating

random error.

In the sections that follow, we first give a detailed description of Juslin et al.’s (2000) statistical adjustment

procedure and clarify the parts of the procedure that we use to investigate random error in confidence

calibration. We also examine general implications of the magnitude of response error found in previous

data sets. Next, we systematically simulate data from four models of confidence: the combined error model

(Juslin, Olsson, & Bjorkman, 1997), the decision variable partition model (DVPM) (Ferrell & McGoey,

1980), a novel DVPM with a cognitive bias component, and a novel combined error model with a cognitive

bias component. We describe each model in detail and apply the correction procedure to each of them.

Finally, we discuss the relationship between random error and cognitive biases, and we argue for the

importance of pursuing experimental manipulations that are designed to illuminate cognitive overconfidence

mechanisms.
CORRECTING OVERCONFIDENCE DATA

Juslin et al. (2000) describe and correct for two types of statistical artifacts associated with overconfidence

data: ‘‘linear dependency,’’ and ‘‘scale-end effects,’’ which deal with random error. Based on a quantitative

review of confidence experiments and on corrections for the statistical artifacts, Juslin et al. conclude that the
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hard–easy effect is due mostly to statistical artifacts and that the data do ‘‘not support the idea of a cognitive

overconfidence bias that is due to, for example, confirmatory search of memory’’ (p. 393). Their conclusions

are partly based on the assumption that the corrections accurately estimate linear dependency and scale-end

effects. Below, we summarize these two types of problems and examine the correction procedures’ accuracy.
Linear dependency
For any decision maker, let d be proportion correct for a stated confidence level f . Linear dependency refers

to the fact that, in computing the correlation between proportion correct (d) and overconfidence

ðOC ¼ f � dÞ, proportion correct (d) enters twice into the equation. Becausewe can expect some amount of

error in sample proportions correct (e.g., variation of sample proportion correct around the population

proportion correct), this causes the observed correlation (and thus, the observed hard–easy effect) to be

artificially large.

For example, consider a decision maker with population proportion correct md and population mean

confidence mf. For any given sample of test items (denoted sample i here), random error means that the

observed proportion correct (di) will be different from md:

di ¼ md þ ei

where ei is the sample error associated with sample i. In words, any sample of test items will exhibit a

proportion correct that is not exactly equal to the population proportion correct. The error term in the

above equation, ei, also has an impact on overconfidence for sample i. This is because di also enters into

the overconfidence calculation. For a mean confidence of f i, we can calculate overconfidence (OCi) for

sample i as

OCi ¼ f i � di ¼ f i � ðmd þ eiÞ

It is evident that the sign of ei has opposite effects on the magnitude of di and OCi: ei is added in the

proportion correct equation and subtracted in the overconfidence equation. That is, for positive ei, proportion

correct increases and overconfidence decreases. The opposite occurs for negative ei. Thus, we could obtain a

hard–easy effect by the simple addition of error to the population proportion correct.

To correct for the linear dependency problem, Juslin et al. (2000) make use of a partitioning scheme

developed by Klayman et al. (1999). In this scheme, experimental data are partitioned into two sets. The first

set is used to estimate proportion correct, and the second set is used to estimate overconfidence. Thus, one ei
enters into the calculation of d and a second, independent ei enters into the calculation of OC. This removes

the artificial relationship between d and OC that results from the same ei entering into the calculation of both

terms. The Klayman et al. method is an effective way of resolving the linear dependency problem in small

samples. As the number of test items gets large, however, the impact of the linear dependency problem is

reduced and the partitioning method is unnecessary. By the Weak Law of Large Numbers, as the number of

test items increase, the sample mean d approaches the population mean md. This implies that the ei become

vanishingly small and will not influence linear dependency. To summarize, for large sample sizes, the

Klayman et al. procedure is unnecessary. In the simulations that we describe in this manuscript, we always

generated a large sample of data for each test—large enough so that the partitioning method has no impact on

the results. Hence, we do not discuss the Klayman et al. procedure further.
Scale-end effects
Scale-end effects refer to the fact that random error in confidence judgments can influence the magnitude of

the overconfidence effect. To be more specific, as the magnitude of random error increases, miscalibration

also tends to increase. Imagine a set of experiments where the decision makers give unbiased (perfectly
Copyright # 2008 John Wiley & Sons, Ltd. Journal of Behavioral Decision Making, 21, 428–448 (2008)

DOI: 10.1002/bdm



432 Journal of Behavioral Decision Making
calibrated) confidence judgments on a 50–100% scale across a series of two-alternative, general-knowledge

experiments. For each experiment, we could plot the experiment-wise overconfidence scores by the

corresponding proportions correct. Such a plot is shown in Figure 1(a). Assuming the decision makers

are perfectly unbiased, the points from each experiment would all fall along the solid line in Figure 1(a). This

is because unbiased judges will have an overconfidence score of 0, regardless of their proportion correct.

If we were instead to first add random response error (ei) to the decision maker’s confidence judgments

over a series of experiments, then we might observe the points in Figure 1(a) (each point is one experiment,
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Figure 1. A depiction of the Juslin et al. (2000) response error correction procedure. In plot (a), a regression line is fit to
observed proportion correct and overconfidence statistics collected across 17 experiments. In plot (b), a regression line is
fit to data simulated from the estimated response error model. To correct for response error, the slope of the regression line

in plot (b) is subtracted from the slope of the regression line in plot (a)
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and the dashed line is a regression line fit to these points). This is because, at confidence levels near 100%,

error can only make confidence go down. That is, decreases in confidence resulting from ei can bemuch larger

in magnitude than increases in confidence. Correspondingly, at confidence levels near 50%, error can only

make confidence go up. This results in overconfidence at the low end of the confidence scale and

underconfidence at the high end, despite the fact that the decision maker’s internal judgments were accurate.

The effect implicitly depends on the bounds of the probability scale; if one instead used a log-odds scale, then

there are no scale-end effects because the log-odds scale is unbounded (going from - 1 to + 1). Note that

the scale-end effects can impact both overconfidence results and hard–easy effects, whereas linear

dependency is specific to the relationship between proportion correct and overconfidence (e.g., hard–easy

effects).

To correct for scale-end effects, Juslin et al. (2000) estimated the amount of random error in their data

using the response error model (Juslin et al., 1997). Briefly, they fit the response error model to a calibration

curve and confidence distribution aggregated over many experiments, and the fitted model yielded

an estimate of the variance of e. They then used the fitted model to generate new data that reflect

miscalibration arising solely from random error (e.g., scale-end effects). From the generated data, they

quantified the scale-end effects and removed them from their observed data. We describe both the procedure

and the response error model in detail below.
The response error model
Model overview

Juslin et al. (1997) proposed that random error in the response system is an important contributor to observed

overconfidence, and they conducted several simulations to demonstrate that overconfidence does indeed

follow from their proposal. The idea of their response error model is that, when confronted with a general

knowledge question, the respondent generates an ecologically valid internal probability that determines the

choice response and confidence that the chosen alternative is correct. An overt probability that the correct

choice has been made is then rendered according to the format provided by the experimenter. For example,

two common formats are to have the person circle one of the six values 0.5, 0.6, . . ., 1.0, or to have the person
write or type a number between 50 and 100%. There is some inconsistency associated with response

execution, so that the same internal probability does not always lead to the same overt probability.

Formally, the ecological/internal probabilities are assumed to follow a symmetric beta distribution, and so

range from 0 to 1. The single parameter of this distribution, a, represents difficulty and is set to reflect the

observed proportion of correct responses. When a is less than 1, probabilities are close to 0 or 1, reflecting an

easy task. When a is greater than 1, probabilities are closer to 0.5, reflecting a harder task. Response error

follows a normal distribution with mean zero and variance s2. Juslin et al. showed by simulation that accurate

ecological/internal probabilities combined with a sufficient amount of response error could produce

overconfidence. In particular, they modeled response error with variances 0.04, 0.08, 0.12, and 0.16, though

the authors indicated that these represented overly large variances chosen for illustrative purposes.
Model-based corrections

Juslin et al. (2000) used this response error model to correct overconfidence data for the scale-end effects

described above. As a first step, they plotted overconfidence scores against proportion correct for 17 distinct

data sets collected from a literature review. Figure 1(a) shows a plot with hypothetical data points, designed to

be similar to Juslin et al.’s Figure 3. They fit a regression line (depicted by the dashed line in Figure 1(a)) to

these observations, yielding a negative slope that characterizes the size of the observed hard–easy effect (i.e.,

as proportion correct increases, overconfidence decreases). Next, they fit the response error model in two

steps. First, they set a so that the mean of the beta distribution was equal to the observed proportion correct.
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Figure 2. Fitted and observed calibration curves. In the Juslin et al. (2000) correction, the observed curve (solid points) is
calculated over a number of experiments. The response error model is then fit to the curve, yielding the curve with empty

points. Specific points on these curves were adapted from Figure 1(b) of Juslin et al. (2000)
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Second, they fit the s2 parameter via least squares to a single calibration curve based on all 17 of the data sets,

along with the corresponding distribution of confidence responses.

The calibration curve is a graph of proportion correct conditioned on different levels of confidence;

Figure 2 presents a hypothetical calibration curve. Proportion correct for each confidence level (0.5,

0.6, . . ., 1) is calculated across all 17 experiments and plotted in the graph. The proportion of responses within

each confidence level is also calculated; this is called the confidence distribution. The response error variance,

s2, is then adjusted via a grid search so that the predicted calibration curve and confidence distribution most

closely resemble the observed calibration curve and confidence distribution (as judged by the sum of squared

error). The resulting s2 estimate represents the magnitude of random response error, or scale-end effects, that

is present in the data.

After fitting the response error model to the observed calibration curve, Juslin et al. (2000) used the fitted

model to estimate overconfidence effects that arise solely from response error. More specifically, they

generated overconfidence predictions for each individual dataset using the fitted response error model.

Figure 1(b) shows these predictions as hypothetical data points, which represent the level of overconfidence

that can be attributed to the scale-end effects alone. Further, the slope of the regression line (the dashed line in

Figure 1(b)) relating these predicted overconfidence values to the proportion correct characterizes the size of

the hard–easy effect due to response error, and so provides the adjustment factor.

Although the fit of the model to the calibration curve may be extremely close, the model generally

produces a smaller regression slope than does the empirical data representing the hard–easy effect. The

difference is termed the ‘‘corrected slope,’’ and it represents the hard–easy effect remaining after effects

due to response error have been subtracted out. In other words, the difference between the slope of the

observed-data regression line (from Figure 1(a)) and the slope of the simulated-data regression line (from

Figure 1(b)) measures the magnitude of the corrected hard–easy effect. Corrected slopes close to zero imply

that the hard–easy effect is largely based on response error (scale-end effects), while corrected slopes further

from zero imply a ‘‘real’’ hard–easy effect.

Preliminary examination of the correction

A key assumption underlying this scale-end correction is that the response error model describes the true

confidence elicitation process closely enough that the estimates of response error are accurate. The model fits
Copyright # 2008 John Wiley & Sons, Ltd. Journal of Behavioral Decision Making, 21, 428–448 (2008)
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aggregate confidence data well, but that fact alone does not mean that the model’s description of the

confidence process is a good one. The model’s flexibility, or ability to accommodate different types of data

patterns, also plays an important role in a model’s goodness of fit (Roberts & Pashler, 2000). If the true

confidence elicitation process differs substantially from the model, then model-based response error

estimates may be inaccurate. Further, if the true confidence elicitation process changes substantially across

experiments or judges, then the aggregate response error estimates may not reflect any single experiment or

judge. Any of these factors could lead to inaccurate scale-end corrections and inaccurate conclusions about

the impact of response error on overconfidence and the hard–easy effect.

As a first step toward examining this assumption, we can establish guidelines for a priori plausible values

of response-error variances. In other words, how noisy is a response system that has an estimated variance of

0.02 (which is the estimated response error variance from Juslin et al., 2000)? On the surface, 0.02 appears to

be a modest number; yet, it is prudent to keep in mind that almost any number associated with a probability

scale is going to be small. It is thus useful to translate the variance into the percentage of misclassifications

due to errors in the motor response system. Also, it is extremely difficult to separate error in the response

system from other sources of error, especially in cognitively complicated tasks like general knowledge tests.

However, as one point of comparison, we can consider other studies that have attempted to characterize the

scope of response error in cognitively simpler tasks. An intuitively reasonable range that recurs in such

research is 2–7% (Nosofsky, Palmeri, & McKinley, 1994). For example, Levine (1975) estimated that study

participants who had acquired the correct hypothesis in a concept-learning task nevertheless misclassified

stimuli about 5% of the time because of response error. Although these tasks are somewhat different than the

general knowledge tasks of interest here, the judgment aspects are similar enough to provide a general

reference to establish a plausible range of values. Furthermore, no study that we know of isolates

misclassification rates due to response error in general knowledge tasks. To do so, it would be necessary to

administer questions where judges directly retrieve the answers from memory (i.e., questions that judges

‘‘know’’) so that other cognitive mechanisms did not enter into the response process.

We can use the 2% to 7% figure in the current context to check the published variance estimate of 0.02 that

Juslin et al. (2000) claim characterize a person’s response error. Consider a two-alternative forced choice task

with six confidence response options of 0.5, 0.6, . . ., 1.0. We first examine what percentage of the time such a

person whose cognitive processing (e.g., in the ecological models, retrieval of learned frequency information)

has led to a particular internal probability will inadvertently circle one of the other five values. A quick

consultation of the normal probability tables reveals that the individual with 0.02 response error variance and

an internal probability of 0.6, 0.7, 0.8, or 0.9 will involuntarily circle some other number on at least 72% of

the trials.

Figure 3 depicts the above calculation for an internal probability of 0.7. After adding normally distributed

response error (with variance of 0.02) to the internal probability of 0.7, confidence judgments follow the

normal distribution in Figure 3. We assume that the judge will state ‘‘0.7,’’ if her judgment is anywhere

between 0.65 and 0.75; this is the shaded region of Figure 3. Using normal probability tables, we find that

the area of the shaded region is 0.276, and the area outside the shaded region is 0.724. This means that, 72% of

the time, the judge will report a probability different from 0.7. The number is smaller when the internal

probabilities are at the extreme values of 0.5 or 1.0; errors occur 36% of the time in these cases. Clearly, the

0.02 variance estimate implies a massive amount of response error. What magnitude of response error

variance yields a misclassification rate of 5%? For an internal probability of 0.7, a response error variance of

0.00065 yields the 5% rate. This value is about 30 times smaller than the estimated value of 0.02.

These observations demonstrate that the estimated error variance reported by Juslin et al. (2000) in their

review of empirical data is too large to reflect only post-cognitive processes in the response system. Because

the variance estimate cannot be explained solely by response error, it is likely that the variance estimate

results from cognitive processes, including cognitive biases and limitations. In the following sections, we test

this idea by simulating data from four confidence models and applying the Juslin et al. response error
Copyright # 2008 John Wiley & Sons, Ltd. Journal of Behavioral Decision Making, 21, 428–448 (2008)
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Figure 3. Calculation of confidence responses implied by a response error variance of 0.02. The judge’s true, internal
judgment is assumed to be 0.7, and the shaded area depicts the probability that a judge’s external judgment (with response

error added) is still 0.7
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correction to each dataset. We are most interested in observing the stability of the response error estimate as

we change model parameters that do not reflect response error.
Combined error model
As suggested by its name, the combined error model (Juslin et al., 1997) introduces error into probability

judgments via two routes: the response error route described above, and an ecological route. These errors lead

to overconfidence and general miscalibration. Within the ecological component (e.g., Gigerenzer et al., 1991)

of the model, judgments arise from a judge’s prior experience with similar stimuli in the environment. Error

arises because a judge’s prior experience in a given environment will not correspond exactly to the parameters

of the environment. For example, if a judge is deciding which of two cities is larger, she might pick a city

based on the fact that one city has a professional baseball team and the other does not. Furthermore, the

judge’s probability of being correct might be based on the fact that she has successfully used this sports-team

cue 7 out of 10 times in the past (hence, a probability judgment of 70%). Error results from the fact that the

judge has received feedback on this cue only 10 times; if she used the cue thousands of times, she might find

that the cue is actually accurate 65% of the time. Correspondingly, the ecological error described here is

modeled via random draws from a binomial(n, p0) distribution, where n is the amount of prior experience that

a judge has with the cue and p0 is the true environmental probability that the cue leads to a correct choice.

Response error occurs in the model when internal probability judgments are translated into external

probability judgments. The model assumes that, after encoding an appropriate stimulus and choosing an

answer, the judge makes a probability judgment. This probability judgment may be based on ecological cues,

or it may be exactly accurate for a given stimulus. In any case, such an internal probability judgment may be

described as a ‘‘feeling of confidence’’ that must be translated into an overt probability. The translation from

feeling of confidence to overt probability is not completely accurate, and error in the overt probability

judgment results. Such error is modeled as the addition of a random draw from a normal(0, s2) distribution to

the internal probability judgment.

In estimating response error in experimental data, Juslin et al. (2000) considered using the combined error

model instead of the response error model. They decided against this, however, because the combined error
Copyright # 2008 John Wiley & Sons, Ltd. Journal of Behavioral Decision Making, 21, 428–448 (2008)
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model’s estimated n parameter tended to be large when fitted to previous data sets.1 Note, however, that the

combined error model has two parameters that affect proportion correct. The beta distribution’s parameter a

represents test difficulty, and the binomial n represents degree of experience. Given the model flexibility

issues described earlier, it is not clear that these two parameters are uniquely identifiable. That is, they may

have achieved equivalently good fits to the data with the combined error model by assuming less experience

and easier tests (lower n and lower a).2
Simulation

Our implementation of the combined error model was similar to that of Juslin et al. (1997). We first set the

model parameters (n, a, and s2) and generated many ‘‘experiments’’ of data from the combined error model

across a range of proportions correct. Next, we used Juslin et al.’s (2000) procedure to estimate the amount of

error variance in the generated data. This method essentially consists of fitting the response error model to the

observed data (which consist of a calibration curve and the corresponding confidence distribution), where the

free parameters are s2 (the response error variance) and a (which is determined by the observed proportion

correct). Finally, we examined how the error variance estimates change with n. If the response error

correction is robust to the data-generating process, then it should accurately recover the error variance (s2)

regardless of the value of n.

For each simulation reported in this paper, we generated 17 experiments of 20 000 trials each. The 17

experiments were chosen to match the number of experiments that Juslin et al. (2000) used. The 20 000 trials

per experiment were chosen to make the summary statistics very precise, removing the need for formal

statistical tests on the differences between the true error variances and estimated error variances.
Results and discussion

The results of several simulations are presented in Table 1, with the values of n and s2 that we used to generate

data noted in the first and second columns. Table 1 shows that the error correction procedure described above

can behave quite liberally in some situations.When n¼ 64, the procedure is reasonably accurate: s2 estimates

(column 4) are nearly equal to the actual s2 value used to generate the data (column 2), and the corrected

slopes representing the hard–easy effects are all (correctly) close to 0. Said differently, the response error

corrections (column 5) are accurate for n¼ 64. As n decreases, however, s2 is overestimated because it is

capturing the added binomial sampling error. This can again be seen by comparing columns 2 and 4. The

overestimate of s2 leads to response error corrections that are too large (in an absolute value sense); in other

words, too much of the original slope relating accuracy to overconfidence is attributed to response error/

scale-end effects.

In summary, Juslin et al.’s (2000) scale-end correction procedure overestimates response error in data that

are generated from the combined error model with small values of n. This happens because, in the combined

error model, error enters into judgments via both response error and ecological error. When estimating

response error, the response error model confuses ecological error for response error, resulting in the

overestimates. Thus, if judges have a small amount of experience with a particular cue, their response error

will likely be overestimated. This may not be the case with the data in the Juslin et al. (2000) paper (the n¼ 64

condition is most relevant here), but studies with other paradigms have suggested that nmay be small because

it reflects limitations in retrieval in addition to low experience.
1When n is large, the combined error model becomes the response error model.
2Note, however, that joint estimation of the calibration curve and confidence distribution may reduce identifiability issues. Furthermore,
Juslin et al. (1997) present evidence that the a parameter has a larger effect on proportion correct than the n parameter.
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Table 1. Simulation results for the combined error model

Parameters Results

n s2 Original slope Est. s2 Scale-end slope Corrected slope

4 0.01 �0.499 0.042 �0.277 �0.222
0.03 �0.569 0.060 �0.362 �0.207
0.05 �0.613 0.087 �0.423 �0.190

8 0.01 �0.385 0.019 �0.151 �0.233
0.03 �0.473 0.036 �0.253 �0.220
0.05 �0.532 0.065 �0.371 �0.160

64 0.01 �0.152 0.013 �0.123 �0.029
0.03 �0.274 0.030 �0.222 �0.052
0.05 �0.362 0.049 �0.314 �0.048
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For example, small values of n have been used with the PROBEX model (Juslin & Persson, 2002) in

the domain of exemplar retrieval.3 Exemplars are specific cases in memory that a judge believes to be

representative of a test category. For example, a doctor trying to diagnose appendicitis may recall past

patients with appendicitis as exemplars for making the current diagnosis. The PROBEX model generally

describes how judges form probability judgments based on these exemplars. The combined error model can

be viewed as a special case of the PROBEX model, so the use of small n with PROBEX implies that small n

may also be used with the combined error model. In general, random error could mask ecological effects

present in the confidence elicitation process. This is problematic if we are trying to conclude that response

error is responsible for confidence calibration effects, rather than systematic cognitive mechanisms such as

retrieval limitations.

We have demonstrated above that the scale-end correction procedure has the ability to confuse ecological

error for response error, even when the confidence-generating mechanism is very similar to the response error

model. How does the correction procedure perform when the confidence-generating mechanism is different

from the response error model, as we can expect in true experiments? We investigate this question below.
Decision variable partition model
The DVPM is one of the earliest and most general formal models of probability judgment specifically

designed to address questions of calibration (Ferrell & McGoey, 1980). It is based on signal-detection theory

and was developed for use in a wide variety of task formats, including the two-alternative forced-choice

(2AFC) tasks that are the focus of the current paper. We describe the model only with respect to this kind of

task.

The DVPM derives its name from the fact that confidence arises from an arbitrarily scaled random

variable, the ‘‘decision variable.’’ The range of the decision variable is segmented into a succession of

partitions that correspond to reported confidence on whatever scale is provided (e.g. ‘‘8’’ or ‘‘very likely’’). In

the 2AFC task, the respondent examines each of the possible alternatives and then generates a numeric

plausibility for each alternative. The plausibilities, which are internal to the judge and do not follow any

particular scale, arise from two normal distributions in a standard signal detection framework. This

framework is presented in Figure 4(a), where one distribution corresponds to the chosen alternative’s
3In this domain, n can be considered the number of exemplars retrieved before making a decision. In one instance of fitting PROBEX to
data, Juslin and Persson found that, on average, participants sample only two exemplars before making a decision.
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Figure 4. Illustration of Ferrell and McGoey’s (1980) decision variable partition model. In panel (a), the judge samples a
plausibility value from the distribution of each alternative. In panel (b), a confidence judgment is attained by partitioning

the decision variable. This variable is simply the difference between plausibility values of the two alternatives
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potential plausibility values and the other distribution corresponds to the unchosen alternative’s potential

plausibility values. The respondent chooses the alternative that produced the larger plausibility value (in

Figure 4(a), this would most often be Alternative A). Confidence is then based on the difference between the

larger plausibility value and the smaller plausibility value (i.e., plausibility of the chosen alternative minus

plausibility of the unchosen alternative), such that larger differences yield higher confidence. The distribution

of differences between plausibility values (i.e., the distribution of the ‘‘decision variable’’), presented in

Figure 4(b), can be derived from the distributions in Figure 4(a). The judge places partitions on this

distribution, and the partitions determine which confidence judgment is reported (in Figure 4(b), the

partitions are the dotted vertical lines). For a given test item, the respondent considers the magnitude of the

decision variable and gives a confidence response corresponding to the partition in which the decision

variable lies.

The DVPM provides good fits to overconfidence and hard–easy effects observed in a wide variety of data

(Ferrell & McGoey, 1980; Suantak, Bolger, & Ferrell, 1996). The model explains the hard–easy effect by

assuming that the placement of partitions is relatively insensitive to task difficulty; they tend to be too narrow

for hard tasks and too wide for easy tasks. As a result, more overconfidence is typically observed for harder

sets of questions. The partitions do not reflect response error, so, as partition parameters change, any

scale-end effects in the model should remain constant.
Simulation

We first used the DVPM to generate data, supposing that people actually operate as specified by the DVPM.

We then applied the response error correction to the data generated by the DVPM. If the response error

correction is reasonable, we should not find any effect of the correction in this instance. That is, the hard–easy

effect exhibited by the DVPM should not be reduced. This is because there is no explicit response error

present in the DVPM. If the scale-end correction does reduce the DVPM’s hard–easy effect, then the

reduction should at least be approximately equal across different parameter values. Partition parameters in

the DVPM do not reflect response error, so partition manipulations should not influence the response error

estimates and scale-end corrections.
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For each of 5 sets of partitions, we simulated 17 experiments of data from the DVPMwith overall levels of

proportion correct ranging from 0.62 to 0.83. This range mimics the data points in Juslin et al.’s (2000)

analyses. We manipulated proportion correct in the model by changing the mean separation between

distributions for the correct and incorrect alternatives. We then applied the scale-end correction to data

generated from each set of partitions.
Results and discussion

Table 2 shows the results of several simulations. The values of the partition parameters are shown in the first

column, and the slopes for the DVPM-generated datasets are shown in the second column. These slope values

are all approximately the same as the value Juslin et al. (2000) reported for their data. We fit the

response-error model to each set of data produced by the DVPM, and the resulting s2 estimates are displayed

in the third column. Modifications of the partitions influenced the estimated s2 substantially, with very

modest changes in slope. This is problematic because the partition parameters do not reflect response error;

thus, estimated s2 should remain the same across the rows of Table 2. Finally, the response-error correction

(i.e., the scale-end slope) associated with the two lowest levels of estimated s2 are approximately the same as

the response-error corrections that Juslin et al. reported.

Juslin et al. (2000) claimed that their results ‘‘. . . remove the main support for the signal-detection-based

decision variable partition model (Ferrell & McGoey, 1980)’’ (p. 393). If the participants in Juslin et al.’s

(2000) studies operated essentially as described by the DVPM, then response error corrections could mask the

DVPM processes. We can make no claims about the validity of the DVPM based on data transformations that

result from the response-error model.

In the next section, we extend this argument to include models that explicitly incorporate cognitive biases,

an ‘‘underweighted alternative’’ bias in particular (e.g., McKenzie, 1997). Alternative underweighting occurs

when, in evaluating confidence in a particular choice, participants ignore or downplay the plausibility of the

unchosen alternative, resulting in overconfidence. To arrive at a formal model, we added an alternative-

underweighting bias to the DVPM.
Underweighted alternative model
The underweighted alternative decision variable partition model (UADVPM) incorporates a cognitive

processing bias into the regular DVPM. The main difference between the DVPM and the UADVPM is the

way that probability judgments are constructed. In the DVPM, probability judgments arise based on

partitioning of the ‘‘decision variable’’. For example, if the value of an observer’s ‘‘decision variable’’ falls in

partition A (see Figure 4(b)), then she may give a probability judgment of, say, 0.8. If the value of the

‘‘decision variable’’ instead falls in partition B, then the observer’s probability judgment may be assigned a

value different from 0.8 (see DVPM description).
Table 2. Simulation results for the decision variable partition model

Partition parameters Original slope Est. s2 Scale-end slope Corrected slope

(0.45, 0.65, 1, 1.3, 1.8) �0.68 0.023 �0.19 �0.49
(0.5, 0.7, 1, 1.4, 1.8) �0.68 0.027 �0.21 �0.47
(0.5, 0.65, 0.85, 1, 1.8) �0.68 0.041 �0.28 �0.40
(0.35, 0.57, 0.74, 0.98, 1.2) �0.68 0.077 �0.40 �0.28
(0.45, 0.65, 1, 1.2, 1.8) �0.65 0.149 �0.53 �0.12
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Like the DVPM, the UADVPM initially assumes that the judge assigns a plausibility value to each

alternative. In this case, however, there is a decision variable for each alternative. That is, the judge first

evaluates the truth of Alternative A and assigns a probability to Alternative A. Next, the judge evaluates the

truth of Alternative B and assigns a probability to Alternative B.4 The judge chooses whichever alternative

has the higher probability. The overt (final) confidence judgment for the chosen alternative is then

calculated as

f ¼ ð1 � w=2Þpc þ ðw=2Þð1 � puÞ
where f is the overt confidence judgment, pc is the probability that the chosen alternative is true, pu is the

probability that the unchosen alternative is true, and w is a weighting factor. (McKenzie, Wixted, Noelle, &

Gyurjyan, 2001, present a number of equations that are similar to this one.)

In other words, the reported confidence that the chosen alternative is correct equals a weighted average of:

(1) the probability that the chosen alternative is true, and (2) the probability that the unchosen alternative is

false. The extent of underweighting of the alternative depends on the parameter w: no underweighting occurs

when w equals 1, and maximal underweighting occurs when w equals 0. McKenzie (1997) showed that

this sort of underweighting can yield an overconfidence effect similar to that observed in the literature.
Simulation

We simulated the UADVPM the same way we simulated the DVPM: assuming that people behave in a

manner consistent with the UADVPM, we first generated data from the UADVPM. We then applied Juslin

et al.’s (2000) scale-end correction procedure to estimate response error in the simulated data. If Juslin et al.’s

procedure only corrects for response error, then changes in theweighting factorw should have no effect on the

error correction. This is because changes to the cognitive underweighting bias do not influence the amount of

response error in the data.
Results and discussion

Table 3 displays simulation results for different magnitudes of w across constant values of partition

parameters. We observe that the estimated s2 values from Juslin et al.’s (2000) correction procedure (column

4) change considerably across values of w. Thus, besides correcting confidence data for response error,

Juslin et al.’s procedure can also reduce or eliminate calibration effects that stem from a cognitive

underweighting bias.
Table 3. Simulation results for the underweighted alternatives decision variable partition model

Parameters Results

Partitions w Original slope Est. s2 Scale-end slope Corrected slope

(0.1, 0.3, 0.4, 0.5, 0.7) 0 �0.815 0.194 �0.582 �0.232
0.5 �0.755 0.044 �0.291 �0.464
1 �0.731 0.028 �0.216 �0.515

(0.1, 0.3, 0.5, 0.7, 0.9) 0 �0.808 0.185 �0.576 �0.233
0.5 �0.759 0.025 �0.194 �0.565
1 �0.757 0.013 �0.104 �0.653

4Ferrell and McGoey (1980) describe application of the DVPM to evaluating the truth of a single alternative.
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When a cognitive underweighting bias is involved in the generation of confidence data, response error

estimates change as a function of the underweighting bias. This demonstrates that, while random error may

be conceptualized as response error within a specific model, random error can also mask cognitive biases in

the confidence elicitation process. As was the case for our other simulation models, this finding implies that

the scale-end correction procedure may correct for more than simple response error in confidence data.

In the best-case scenario for the scale-end correction procedure, confidence judgments arise from the

addition of random error to a true internal probability. This would imply a cognitive process that is similar to

the response error model, in which case the procedure could plausibly yield accurate corrections. In the

worst-case scenario for the procedure, confidence judgments arise from a complex confidence elicitation

process, a process that includes some degree of underweighting. In this case, we have demonstrated that the

discrepancy between the actual elicitation process and the response error model will likely render the

resulting response error corrections meaningless.
Combined error model with confirmation bias
Up to now, we have described three systematic mechanisms that can be at least partially masked by random

error: ecological error, partition placement, and a cognitive underweighting bias. These findings are

problematic for the notion that random error effects are separable from systematic effects. If error estimates

are influenced by systematic mechanisms, then we can draw no conclusions about the contribution of random

error versus the contribution of systematic biases to confidence calibration.

While we have shown that error models can mimic data generated by many confidence elicitation

mechanisms, the models cannot fit data from any mechanism. That is, the error models do put (weak)

constraints on potential ‘‘true’’ confidence elicitation processes. To demonstrate this, we now simulate

confidence data from a combined error model with a confirmation bias (CEMCB).

With regard to the confidence elicitation process, the term ‘‘confirmation bias’’ generally refers to a

predisposition to rely on evidence supporting one’s choice in ignorance of evidence contradicting it. For

example, consider a judge who is completing a series of two-alternative trivia questions. For a given question,

the judge may choose Alternative A and then assess her confidence in that choice. In assessing confidence, the

judge with a confirmation bias would be predisposed to consider only evidence supporting Alternative A, in

ignorance of evidence against Alternative A. Koriat, Lichtenstein, and Fischhoff (1980) and Lee et al. (1995)

describe confirmation biases and show how they can contribute to the overconfidence effect.

The CEMCB that we use in this section is very similar to the combined error model that we previously

described in this paper. As before, ecological error is modeled via a binomial distribution, with the n

parameter reflecting a judge’s experience with a specific cue or, in the confirmation bias case, the number of

recruited arguments for a particular alternative. Also, response error is modeled via the addition of normal,

random error to an internal confidence judgment. The new part of the model implements a confirmation bias,

where judges create confidence judgments by focusing on evidence in support of the chosen alternative and

disregarding evidence against the chosen alternative.

In the CEMCB, we assume that the judge first assesses evidence for each alternative using his or her

knowledge of the environment (i.e., evidence for each alternative is obtained via the binomial distribution). In

translating this evidence into a probability judgment, we implement the confirmation bias as

f ¼ S=½S þ ð1 � bÞA�
where S is evidence supporting the chosen alternative, A is evidence contradicting the chosen alternative, and

b is a weighting factor representing the extent of confirmation bias. We then obtain the final, overt confidence

judgment by adding random error to f.

In words, the extent to which a judge considers evidence contradicting the chosen alternative depends on

the magnitude of b. When b¼ 0, the judge fully considers evidence against the chosen alternative, resulting
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in no confirmation bias. When b¼ 1, the judge completely ignores evidence against the chosen alternative,

resulting in a massive confirmation bias.
Simulation

We simulated the CEMCB in the same manner as for the other models. First, we generated data from the

CEMCB using specific values of the model parameters n, s2, and b. Next, we applied the Juslin et al. (2000)

procedure to estimate random error in the simulated data. If error models cannot mimic confirmation biases,

then the estimated error variance and corresponding response error correction should be the same across

different values of b.
Results and discussion

Table 4 displays simulation results for different values of b and n across a constant error variance s2. In

contrast to the other models, where the estimated s2 and scale-end slopes varied greatly with model parameters,

the estimated s2 and scale-end slopes here (columns 4 and 5) are similar from b¼ 0 (no confirmation bias) to

b¼ 0.5 (sizeable confirmation bias). This implies that random error cannot mask all forms of confirmation

biases present in overconfidence data.

To examine how our simulated data compared to empirical data, we explored the magnitudes of

overconfidence present in our simulated data. Focusing on data for n¼ 64, the range of overconfidence varies

greatly for different values of b. For example, when b¼ 0, experiment-wise overconfidence in our simulated

data ranged from �0.01 to 0.03. When b¼ 0.5, however, experiment-wise overconfidence ranged from 0.05

to 0.15. These overconfidence ranges are generally higher than those observed by Juslin et al. (2000), which

was approximately �0.1 to 0.1 (see their Figure 3).

These findings support the Juslin et al. (2000) statement that a confirmation bias ‘‘is obtained when the

bias is observed regardless of the proportion correct, or, at least, if we find a clear dominance of the bias for

most levels of proportion correct’’ (p. 388). Furthermore, the CEMCB simulations corroborate Juslin et al.’s

claim that the balance of evidence does not favor this specific kind of cognitive bias for the judgment tasks

considered here. Specifically, when Juslin et al. corrected overconfidence data with the response error model,

the hard–easy effect disappeared. Because the response error model cannot mimic this form of confirmation

bias, the correction must not have removed confirmation bias effects of this type. As a result, there is no

remaining effect that can be attributed to this specific kind of confirmation bias.
Table 4. Simulation results for the combined error model with confirmation bias

Parameters Results

n b Original slope Est. s2 Scale-end slope Corrected slope

4 0 �0.502 0.037 �0.266 �0.236
0.25 �0.552 0.041 �0.286 �0.266
0.5 �0.656 0.047 �0.314 �0.342

8 0 �0.375 0.022 �0.177 �0.198
0.25 �0.478 0.020 �0.166 �0.312
0.5 �0.613 0.025 �0.192 �0.421

64 0 �0.140 0.013 �0.121 �0.019
0.25 �0.285 0.010 �0.106 �0.179
0.5 �0.455 0.017 �0.149 �0.306
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In summary, we have found evidence that random error cannot mimic all forms of confirmation biases in

the confidence elicitation process. While random error can mimic many systematic processes in confidence

elicitation, it places some constraints on potential contributors to overconfidence.
GENERAL DISCUSSION

Error models of confidence calibration generally specify overconfidence as arising from the addition of

random error to calibrated confidence judgments. The fact that these models provide good fits to confidence

data implies that overconfidence may not be a ‘‘real’’ psychological phenomenon; overconfidence may only

be an artifact of random error or other methodological problems. For example, Juslin et al. (2000) claim that

there is little evidence of a cognitive-processing bias in the confidence elicitation process and that the

hard–easy effect is an artifact related to linear dependency and scale-end (i.e., response error) effects. The

intent of this paper has been to examine specific psychological processes that the error models can mimic.

The approach involved simulating data from known mechanisms and examining the corrections across

differing mechanisms. Our results lead us to conclude that error models can mimic confidence data that are

generated by a number of systematic psychological processes. Thus, use of error models to disconfirm

systematic biases in confidence judgments can be misleading because these procedures also eliminate

systematic biases that are actually present in the judgments.

We began our examination of random error by investigating the magnitude of response error estimates that

are typically produced by error models. By looking at response error estimates in terms of the percentage of

misclassifications, we concluded that the response error estimates are very large, and, thus, may also be

estimating systematic processes. Next, we simulated data from four models of confidence with specific

parameter settings: the combined error model (Juslin et al., 1997), the DVPM (Ferrell & McGoey, 1980), a

novel version of the DVPM that includes one kind of cognitive bias, and a novel version of the combined error

model that includes a distinct cognitive bias.

For the first three models, we found that the magnitude of the response error estimate is influenced by

model parameters that do not reflect response error. For the combined error model with a confirmation bias,

we found that the response error estimate is largely unaffected by the magnitude of cognitive bias. Taken

together, these findings are problematic for researchers who treat random error and cognitive biases as

generally separable, distinct explanations for overconfidence. While random error cannot mimic all types of

cognitive biases, it can mimic the effects of many systematic information processing mechanisms.
Overconfidence causes versus effects
In estimating the effects of different contributors to overconfidence, it is important to distinguish between

systematic cognitive processing biases and systematic overconfidence effects. In describing the linear

dependency and scale-end effects present in overconfidence data, Juslin et al. characterize cognitive biases as

simple effects in the data across a range of proportions correct. For example, they state that the idea of a

cognitive overconfidence bias is ‘‘supported when there is a bias that covers most of the range of proportion

correct, in a way that is not better accounted for by scale-end effects, linear dependency, or regression

effects’’ (p. 393).

An alternative definition of ‘‘cognitive bias’’ is a systematic bias in the way information is processed

within the cognitive system. Such a bias may or may not lead to a simple, constant effect in the data. Indeed, it

is quite plausible that such a systematic contributor within the confidence construction process, when

combined with other aspects of the process, leads to complex effects in the data. This definition and the results

of our simulation studies highlight the need to discriminate between properties of a generating process and

properties of the resulting effects.
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An important implication of this distinction is that attempts to separate effects that are due to systematic

versus random components of the cognitive process are difficult and rely heavily on the particular model that

is chosen. What the various investigations into random processes have contributed, on the other hand, is that

mere observation of overconfidence in a data set does not, by itself, entail a systematic bias in the generating

system. Together, these implications force us to consider that quite different approaches are required to

advance our understanding of the nature of the cognitive processes underlying confidence judgment. Clever

experimental design (e.g., Budescu et al., 1997) has proven to be one useful approach. The joint examination

of multiple confidence measures could also prove useful. While some researchers have focused on modeling

multiple confidence measures (e.g., Dougherty, 2001;Merkle &Van Zandt, 2006), Wallsten (1996) points out

that researchers often place undue emphasis on overconfidence and the hard–easy effect. Finally, other

procedures intended to separate out individual contributors to overconfidence should be subjected to the sort

of detailed testing that we present in this paper.
Problems in confidence research
There are many mathematical models of confidence, and these models’ explanations for overconfidence

include ideas like random error, cognitive biases, and ecological validity. In reviewing these models, we can

appreciate that the mere finding that some factor could yield overconfidence does not mean that that factor is

necessarily at work in the confidence elicitation process. Furthermore, all models have weaknesses and are

incomplete. It is probable that response error, systematic cognitive biases, and ecology all contribute to

overconfidence effects to some degree. After taking into account all overconfidence results found in the

research (e.g., alternative-underweighting effects, training effects, cultural effects, etc.), each class of models

probably can explain some effects that no other class of models can explain.

That said, research involving error models often places random error in an elevated position over other

explanations for overconfidence: the error model is used to account for random error in the elicitation process,

and other explanations for overconfidence are validated only to the extent that an overconfidence effect

remains. The current research highlights the fact that teasing apart the different contributors to

overconfidence is more difficult than it may seem. While we can use models to estimate the effects of these

different contributors, the extent to which these estimates are accurate is often unknown.

On a related note, the extent to which a model differs from the true elicitation process may also have an

impact on parameter estimates (MacCallum, 2003; Ratcliff & Tuerlinckx, 2002; Van Zandt, Colonius, &

Proctor, 2000; Van Zandt and Ratcliff, 1995; Wagenmakers, Ratcliff, Gomez, & Iverson, 2004). The true

confidence elicitation process may be thought of as a large equation with many parameters, some of which

are not identifiable. Only clever empirical designs, and not quantitative methods that control for random

error, will allow us to isolate and investigate individual contributors to overconfidence. To this end,

mathematical models of confidence that describe a plausible confidence elicitation process can help us to

design relevant experiments. The effects of different parameters representing different aspects of the

elicitation process can be assessed, and experiments can be designed based on these assessments. Such

confidence models include not only the Combined Error Model, but also Minerva-Decision Making

(Dougherty, 2001), Underweighted Alternatives Models (McKenzie, 1997), the Random Support Model

(Brenner, 2003), the Exemplar Retrieval Model (Sieck, 2003; Sieck & Yates, 2001), and the Poisson Race

Model (Merkle & Van Zandt, 2006). Furthermore, Sieck, Merkle, and Van Zandt (2007) present two

experiments whose designs were based on the Assess-Search-Construct model. This model posits that

familiarity drives choice of an alternative, which subsequently biases the confidence elicitation

process. The model implies that confidence calibration will improve if participants explicitly judge the

truth of each alternative during the confidence elicitation process, and the two experiments supported this

implication.
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CONCLUSIONS

The random error estimated by many confidence models may not be truly ‘‘random:’’ our analyses have

shown that the magnitudes of the error estimates are highly influenced by factors that do not represent

response error. That is, the error in confidence models is analogous to the error term in ANOVA and

regression contexts, which represents other sources of variation that are not included in the model (e.g., Dean

& Voss, 1999). While we agree that random error can play a role in the overconfidence phenomenon, our

results imply that researchers who claim evidence against cognitive overconfidence biases have overstated

their case. Response error, ecological validity, and cognitive biases likely all contribute to the overconfidence

effect in some situations, and future studies can move toward examining the interplay between different

contributors to overconfidence in specific situations. A careful consideration of a range of mathematical

models of the confidence process will go a long way toward this goal.
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