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Overconfidence Effects in Category Learning:
A Comparison of Connectionist and Exemplar Memory Models

Winston R. Sieck and J. Frank Yates
University of Michigan

Exemplar and connectionist models were compared on their ability to predict overconfidence effects in
category learning data. In the standard task, participants learned to classify hypothetical patients with
particular symptom patterns into disease categories and reported confidence judgments in the form of
probabilities. The connectionist model asserts that classifications and confidence are based on the
strength of learned associations between symptoms and diseases. The exemplar retrieval model (ERM)
proposes that people learn by storing examples and that their judgments are often based on the first
example they happen to retrieve. Experiments 1 and 2 established that overconfidence increases when the
classification step of the process is bypassed. Experiments 2 and 3 showed that a direct instruction to
retrieve many exemplars reduces overconfidence. Only the ERM predicted the major qualitative phe-

nomena exhibited in these experiments.

Consider the following medical diagnosis problem:

Patient: K.M.

The patient presents with: Rash, Earache

The patient does NOT exhibit: Swollen Hands
Diagnosis (indicate one): Trebitis, Philiosis

Probability that this patient has the indicated
disease (50-100%): %.

As implied by the form of the question, the respondent makes two
judgments. First, the respondent states an opinion as to which of
the two (hypothetical) diseases is afflicting patient K.M. The
respondent then specifies a probability judgment that the patient
actually has the selected disease. Furthermore, once these judg-
ments have been rendered, the respondent learns the truth about
patient K.M.’s condition, hence, providing the opportunity to
improve his or her future diagnoses.

A past study that used a task like this one revealed an interesting
overconfidence phenomenon. Specifically, participants were found
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to report average probability judgments that far exceeded the
proportions of accurate diagnoses that were made (Yates, Lee,
Shinotsuka, Patalano, & Sieck, 1998). For instance, in Experiment
1, American participants who had previous experience with 60
patients diagnosed another 60 patients. The mean of the probability
judgments for this second set of patients was 80%, whereas the
percentage of correct diagnoses was only 68%.

Overconfidence in this sense has been an extremely reliable
finding in probability judgment tasks using general knowledge or
“almanac” questions following this form: “Which species has a
longer gestation period: (a) chimpanzees or (b) humans?” In typ-
ical experiments, a respondent first states which of the two alter-
natives is correct, and then specifies a probability between 50%
and 100% that he or she is, in fact, correct (e.g., Lichtenstein,
Fischhoff, & Phillips, 1982). Overconfidence in general knowl-
edge is currently a topic of intense interest, and numerous pro-
posed accounts are being vigorously debated (see, e.g., the recent
reviews by Keren, 1997; McClelland & Bolger, 1994; Yates, Lee,
Shinotsuka, & Sieck, 2001). However, it is questionable as to
whether the sources of overconfidence in general knowledge tasks
are the same as those of the overconfidence found in situations like
the medical diagnosis task described above. This is especially true
because performance in these distinct tasks is plausibly subserved
by different memory systems. Specifically, the explicit factual
information needed to respond to general knowledge questions
should be located in a declarative memory storage system. In the
current task, however, participants repeatedly classify patients into
one of two disease categories on the basis of a fixed set of potential
cues, and they receive feedback after each trial. So, performance in
this task may well be mediated by a procedural memory system, as
in cognitive skill learning or classical conditioning (Squire, 1986).
Considerable evidence suggests that distinctions exist in the kind
of information that is stored and retrieved in these separate sys-
tems, implying that overconfidence might occur for quite different
reasons in the two tasks. Because memory representation and
performance issues have been extensively investigated in studies
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of category learning, ideas from that domain were expected to
provide a useful theoretical point of departure for the current work.

Why is overconfidence in category learning tasks so significant?
It is mainly important to the development of judgment theories. As
mentioned above, empirical investigations of overconfidence have
most often relied on almanac items, and so findings from those
kinds of tasks have been especially, perhaps overly, influential on
theories of judgment. Any theory that endeavors to provide a
universal account for overconfidence must explain its presence in
category learning tasks as well as in those concerning general
knowledge. And to the extent that specific overconfidence effects
differ between these tasks, any potential unified theory will need to
incorporate plausible memory and processing mechanisms that
explain the differences. Unified theories are themselves critical for
applications to more complicated, real-world judgment situations
that might, for example, heavily engage both declarative and
procedural memory systems.

This last point leads us to the practical consideration of the
impact that overconfidence can have on decision quality and the
very real costs that can be incurred. For instance, in the early
1970s, Royal Dutch/Shell noticed that newly hired geologists were
overconfident in their predictions about the presence of oil or gas,
despite having excellent credentials (Russo & Schoemaker, 1992).
Specifically, only 1 or 2 wells in 10 produced when the geologists
estimated a 40% chance of finding oil, thus costing the company
enormous amounts of money and time.

Research Strategy

The goal of the present research was an improved understanding
of overconfidence in category learning tasks. There is good reason
to believe that many factors are capable of affecting overconfi-
dence. The current focus, however, was on possible contributors
that arise naturally from different memory systems. The theoretical
approach was as follows. First, two well-known, relatively simple,
models of classification learning that incorporate distinct memory
systems were extended to account for probability judgments. Then,
the extended models were scrutinized to ascertain how overconfi-
dence would arise from each. These distinct proposals for over-
confidence in category learning’ were then subjected to empirical
investigation. Specifically, experiments were devised wherein the
ordinal predictions of the models differed so as to obtain sharp
tests between them.

The models adopted for extension were a simple connectionist
network model (Gluck & Bower, 1988; Shanks, 1990) and an
exemplar-memory model (Medin & Schaffer, 1978; Nosofsky,
1986). The simple network model essentially assumes that people
learn relationships between cues and categories in a manner akin to
classical conditioning. In contrast, the exemplar model suggests
that people store individual examples in memory and base their
judgments primarily on the first exemplar retrieved. Of course,
there are many other reasonable candidate models of category
learning that could potentially be adapted to the current task
as well (e.g., Anderson, 1991; Ashby, 1992; Hintzman, 1986;
Kruschke, 1992).2 The simple connectionist and exemplar models
were chosen for initial comparison because their conceptions of
memory representation and the categorization process are radically
different, elaborating each to account for confidence in classifica-
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tions is fairly straightforward, and their relative simplicity facili-
tates the determination of which key assumptions yield overcon-
fidence.

The plan of the rest of this article is as follows. First, each of the
models under investigation is described in detail, including the
specific accounts for overconfidence implied by each. A series of
experiments that test each model’s explanation for overconfidence
is then reported. In the concluding section, some remaining issues
are addressed, and theoretical implications are discussed.

Activation Strength Model (ASM)

Connectionist network models of category learning were devel-
oped and popularized by researchers such as McClelland and
Rumelhart (1985), Gluck and Bower (1988), and Shanks (1990).
The essential idea of the simplest versions is that a judge learns
associations between available cues and categories in a manner
analogous to specific proposals for classical conditioning (Res-
corla & Wagner, 1972). Suppose, for concreteness, that the judge
is a physician faced with the task of diagnosing each of a series of
patients as having one of two diseases, Trebitis or Philiosis, as in
the example presented earlier. As the doctor gains experience by
observing the symptom pattems of many patients and eventually
finding out whether each had Trebitis or Philiosis, he or she comes
to form associative bonds between each of the symptoms and the
diseases. When the doctor sees a new patient, the individual
association strengths for each of the symptoms are combined to
form a total degree of association or activation for one of the
diseases over the other, say, Trebitis over Philiosis. These models
assume that the doctor’s diagnosis depends on this total degree of
activation in a probabilistic fashion. That is, the probability that the
doctor chooses Trebitis increases with the total degree of activa-
tion rather than the doctor always choosing Trebitis once some
threshold is exceeded.

The present ASM extends these past ideas in a very natural way
to account for confidence judgments, reported in the form of
probabilities. Suppose a respondent is required to classify a hypo-
thetical patient as having either Trebitis or Philiosis and then to
report a 50-100% confidence judgment. According to the ASM,
the following steps occur.

Step 1: Symptom activation. Mental representations of the
symptoms with which the patient presents become activated or
“turned on.” Symptom activation is denoted by «,, where the «; are
indicator variables for each of m symptoms such that «; = 1 if the
ith symptom is present, and «; = 0 if the ith symptom is absent.

Step 2: Category activation. The association strengths for each
of the activated symptoms are then totaled. This total activation is
the respondent’s internal likelihood that the patient has Trebitis as

! Unless otherwise indicated, overconfidence will henceforth mean over-
confidence in category learning tasks.

2 In fact, Dougherty, Gettys, and Ogden (1999) did so with Hintzman’s
MINERVA model. The present selections were made independently, and
prior to publication, of that work. Nevertheless, the results of this study do
have implications for the Dougherty et al. model, as is described in the
General Discussion.
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opposed to Philiosis (the assignment to Trebitis instead of Philiosis
is arbitrary). That is, the total category activation is given by

A= wa, 6}
i=1

where w; indicates the strength of the association that exists
between the ith symptom and the focal disease category. That is,
positive values of w; tend to evoke the category Trebitis, and
negative values evoke Philiosis; values near zero represent a lack
of association between the symptom and diseases.

The total activation, A, is the person’s internal or covert degree
of belief or likelihood that the patient actually has Trebitis, based
on the symptoms displayed by the patient. However, A generally
falls within the range (—1 to 1), so the person’s internal probability
that the patient has Trebitis is given by

A+1
Pr="75—. @

On those few occasions where A falls out of the (—1 to 1) bounds, Pt
is assigned O or 1, respectively. As discussed below, P tends toward
the ecological relative frequency of Trebitis as learning progresses.

Step 3: Probabilistic choice. The chance that the respondent
chooses Trebitis rather than Philiosis is equivalent to the internal
probability of Trebitis, Py, generated in Step 2.

Step 4: Probability judgment. Reported confidence that one’s
choice is correct is denoted by P, and depends on whether the
choice was (subjectively) optimal or “perverse.” Suppose the re-
spondent chose Trebitis. Then,

Pr= .5

P‘_{.5+kPT Pr<.5 @)

where &k, with 0 =< k = 1, is a parameter indexing the person’s
willingness to give an extreme judgment after making a perverse
choice. One should note that the reported probability that a per-
verse choice is correct increases linearly with the internal proba-
bility that the choice is actually correct. If Philiosis is chosen, Pp =
1 — P, the probability for Philiosis would be substituted for P in
Equation 3 (this rests on an assumption of binary complementarity,
which has been shown to hold to a good approximation; e.g.,
Ariely et al., 2000).

After the classification process just described has ended, there is
a learning step that occurs if feedback regarding the patient’s
actual disease is provided. According to the ASM, the learning
occurs through Step 5.

Step 5: Learning. The respondent’s association strengths be-
tween the symptoms and diseases are adjusted to more appropriate
values in light of the disease the patient is actually found to have,
through the Rescorla—Wagner leaming rule (Rescorla & Wagrner,
1972). Imagine that the person has encountered j patients and has
just received feedback concerning the jth patient’s actual disease.
According to the Rescorla—Wagner leaming rule, the new associ-
ation strength for symptom i is given by

Wisy = Wy + BalT — A). 4

In this expression, B is a learning rate parameter that governs the
amount by which the weight (w) can change on a given trial. T is
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an indicator variable, such that T = 1 if the patient actually had
Trebitis, and T = —1 if the patient had Philiosis. One should note
that the greater the disparity between A and what actually occurred,
T, the more the weights change.

The assumption of probabilistic choice in Step 3 has been
critical to the past successes of network models in accounting for
choice behavior, and it is key to the ASM’s account of overcon-
fidence. The intuition is that the respondent has less than a 50%
chance of being correct for those trials on which he or she predicts
that the less likely event will occur. However, the respondent’s
reported probability that the diagnosis is correct is constrained to
be at least 50%. Hence, these nonoptimal choice trials contribute
considerable overconfidence to the respondent’s judgments. The
probabilistic choice assumption was made, but not extensively
discussed, in earlier network models. It is addressed here because
of its key role in the ASM’s account of overconfidence.

The empirical basis for assuming that choice is probabilistic is
the classical phenomenon of probability matching (Grant, Hake, &
Hornseth, 1951; Humphreys, 1939). That is, for example, when an
event T actually occurs 70% of the time, people tend to predict the
occurrence of event T on 70% of the trials rather than on every
trial. This effect, at least to a first approximation, has been repli-
cated in innumerable studies (cf. Estes, 1964). The Rescorla—
Wagner learning rule leads to an activation level for the event T
that tends toward the actual proportion of times that T occurs
(Gluck & Bower, 1990). So, if people learn in a manner consistent
with the Rescorla—Wagner equation, then there must be a rule that
takes the internal probability as input and probabilistically returns
a response in order to account for probability matching.?

Another reason to propose that a probabilistic response rule
exists is that there are, in fact, situations where such a rule would
be decidedly advantageous. For example, it is useful when one is
trying to predict the actions of an intelligent adversary. In this case,
the adversary will undoubtedly change his strategy if you predict
his most likely action in every encounter (and, of interest, in some
early studies of probability learning, participants were instructed to
“outguess the experimenter on each trial;” e.g., Estes & Straughan,
1954, p. 228). Analyses from game theory imply that a rational
solution in these situations is to minimize the maximum difference
between the actual payoff for a given set of strategies and the
payoff that could be obtained if the adversary’s strategy were
anticipated (i.e., to minimax regret; Simon, 1956). When payoffs
are symmetric, this implies that the optimal solution is to respond
to the adversary’s most likely action with the same probability that
that action occurs. Hence, it could be that such a rule is induced
from many previous experiences and then overgeneralized to all

3 A problem with the probability matching prediction of these models is
that choice proportions have been found to slightly overshoot objective
probabilities greater than .5 and to slightly undershoot objective probabil-
ities less than .5 after extremely long training periods. For example,
Edwards (1961) found such effects by 1,000 trials of exposure to a single
input pattern. Other investigators have attempted to deal with this problem
by proposing probabilistic choice rules using a ratio of exponentials that
explicitly contain response scaling parameters. Nevertheless, for learning
into the hundreds of trials, predictions based on the Rescorla~Wagner rule
do just as well without the extra response parameter as with it (see Gluck
& Bower, 1988).
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kinds of prediction tasks, such as the one under consideration
here.* This argument is clearly speculative but may foster further
needed discussion, as implied by the following quote from Estes
(1997): “Throughout the history of research on learning and clas-
sification related to the choice model, the probabilistic conception
seems to have been generally assumed, usually without discus-
sion” (p. 326).

Exemplar Retrieval Model (ERM)

Exemplar models of category learning were originated by Me-
din and Schaffer (1978) and have been studied extensively since
then (cf. Medin & Florian, 1992; Nosofsky, 1992). The essential
idea is that a judge learns by accumulating distinct experiences of
cues and categories; in the physician example, storing the symp-
tom patterns and disease outcomes of patient after patient. When
the doctor receives a new patient, similar, previously encountered
exemplars are brought to mind and used to arrive at a diagnosis.
Specifically, Medin and Schaffer (1978) described the process as
one in which classification is often based on the first exemplar
retrieved. And the fundamental idea of classifications depending
on one or a very few retrieved examples is also consistent with
other current exemplar models (e.g. Nosofsky & Palmeri, 1997;
Smith, Patalano, & Jonides, 1998).

The present ERM elaborates on the ideas of Medin and Schaffer
(1978) in a very direct way to account for probability judgments in
addition to classification behavior. Suppose a respondent is re-
quired to classify a hypothetical patient as having either Trebitis or
Philiosis and then report a 50—-100% probability judgment that the
classification was correct. According to the ERM, Steps 1-7
(below) occur.

Step 1: Encode cues. The patient’s profile is examined.

Step 2: Exemplar retrieval. The respondent retrieves similar
past instances, each of which indicates either Trebitis or Philiosis.
Typically, only one exemplar is retrieved. The probability that a
particular patient’s case is retrieved from memory on each cycle is
assumed to be governed by the Medin and Schaffer (1978) re-
trieval rule. Imagine that the respondent has accumulated infor-
mation on j — 1 patients and is now facing the jth patient (the
probe). According to the Medin-Schaffer retrieval rule, the simi-
larities along various symptom dimensions between the probe and
previously stored patients are assumed to be combined in a mul-
tiplicative manner. Here, a single similarity parameter is used for
all of the dimensions rather than using separate parameters for
each dimension. According to this simplified version of the rule,
the similarity between the jth and the kth patients (k = 1toj — 1)
is given by

sim(j, k) = s*, (®)]

where d, is the number of mismatching symptoms that exist
between the kth patient and the probe (jth patient), and s (0 < 5 <
1) is a parameter that represents the similarity of mismatching
values for each symptom. Equation 5 shows that the similarity
between the previously stored patient k and the probe decreases
exponentially with each difference between patient ks symptom
profile and that of the probe (Nosofsky, 1984; Shepard, 1987). The
parameter s can be thought of as measuring the degree to which
respondents fail to notice mismatching values. If s = 1, then the
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mismatching values are not noticed, so that similarity to the probe
is not influenced by that dimension. If s = 0, then any difference
between patient k and the probe nullifies the overall similarity
between those patients, regardless of how many other symptoms
might match.

The probability that the kth patient is retrieved is given by

sim(j, k)

P(retrieve k| j) = m , 6)

k

and the total probability that'any patient with the disease Trebitis
is retrieved is

E sim(j, k)
P( ‘ T o kET
retrieve T|j) = S sim(, k) + >, sim(j, k)’ Q)
kET kEP

where T and P represent the disease categories Trebitis and Philio-
sis, respectively.

Step 3: Balance assessment.  The respondent assesses the
extent to which, on balance, the collection of exemplars retrieved
in Step 2 supports either Trebitis or Philiosis. The balance assess-
ment is represented by

Sv= X, (8)

where X; indicates each of the outcomes in the sample of retrieved
cases, such that X; = 1 if the ith patient in the sample had Trebitis,
and X; = —1 if the ith patient had Philiosis. N is a constant
representing the number of past cases that were retrieved on each
trial at the time of the choice response.

Step 4: Choice. The respondent chooses the disease favored in
Step 3. That is, the respondent chooses Trebitis whenever S,, > 0
and chooses Philiosis whenever Sy < 0 (the response is random
when S, = 0). It is noted that the balance favors whatever
exemplar was retrieved when N = 1, and so choice is completely
governed by Equation 7 for that special case. Hence, it can be seen
that the current model is a direct extension of the earlier formu-
lation by Medin and Schaffer (1978).

Step 5: Exemplar retrieval. The prompt for a confidence judg-
ment induces the respondent to engage in another retrieval episode.
The probability that each patient retrieved during this episode has
Trebitis is as given in Equation 7.

Step 6: Balance reassessment. The respondent reassesses the
balance of the collection of exemplars obtained from Steps 2 and 5.
The updated assessment is represented by

M

Su=Sy+ O X, )

i=N+1

4 A point against this argument is that respondents are often unable to
generate sequences that pass statistical tests for randomness on demand
(e.g., Bar-Hillel & Wagenaar, 1993). However, Rapoport and Budescu
(1992; Budescu & Rapoport, 1994) found that respondents were more
successful at generating random sequences in the context of actual two-
person games than when explicitly instructed to do so.
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where M > N represents the total number of exemplars retrieved
on the trial at the time of the confidence response.

Step 7: Probability judgment. The respondent’s personal prob-
ability that the patient actually has Trebitis, based on the balance
assessment, is denoted by Fir 5. Fr ,, is the random variable given
by

1]+M+SM

Fu= v evam (10

where 17/(n + ¢) represents the respondent’s personal probability
of Trebitis, prior to retrieving any past cases. Because, according
to the model, this prior is not based on any real information, 7 and
¢ should be very small, and here we use y = n = ¢ € [0, 1],
which form defensible Bayesian reference priors. The respondent’s
reported probability judgment is

Frum Fryz= .5
Fou= {1 — Fry otherwise’ an
where F_,, is the reported probability that the patient actually has
the indicated disease (i.e., is correct). Again, we are assuming
binary complementarity, which seems to provide a good approx-
imation (e.g., Ariely et al., 2000).

After the classification process has ended, there is a learning
step that occurs if feedback regarding the patient’s actual disease
is provided. According to the ERM, the exemplar presented on
each trial is deposited into a long-term store (LTS).

A key assumption of the ERM is that each retrieval episode
generally produces only one exemplar, so that choice is based on
a single exemplar and confidence is based on two exemplars (i.e.,
N = 1, M = 2). This abbreviated retrieval assumption is critical to
the ERM’s account of overconfidence.’ The idea is that only a tiny
fraction of a respondent’s total knowledge store is incorporated
into the judgment. Such a small sample provides a sizeable chance
that the recruited evidence points in the wrong direction. However,
because this sample is, according to the model, all that is taken into
account, the respondent will be highly convinced in the appropri-
ateness of the chosen alternative. It is noted that a second impor-
tant assumption is that more information is retrieved with each
judgment prompt. This implies that the confidence reported is not
equivalent to the degree of confidence actually experienced at the
time the choice was made.

These assumptions are further elaborated below. The first reason
for expecting retrieval to be abbreviated is that it is effortful, at
least to some degree. Research on contingent use of strategies in
decision making (cf. Payne, Bettman, & Johnson, 1992) implies
that people will be inclined to terminate retrieval quickly, so as to
minimize the cost associated with retrieval effort. Also, people
have been shown to believe in a law of small numbers (Tversky &
Kahneman, 1971). That is, they tend to draw stronger conclusions
from limited amounts of data than are warranted by the normative
principle of the law of large numbers. People do not retrieve larger
amounts of evidence because they see no need to do so. A reason
to expect a second retrieval episode at the confidence prompt is
that the new request influences people to reconsider the problem
from a different angle. Research in memory retrieval suggests that
repeated testing leads to changes in the retrieval cues used, so that
recall is increased (e.g., Roediger & Payne, 1982). Also, judgment
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errors have tended to be reduced in judgment studies using within-
participants rather than between-participants designs, suggesting
that participants rethink problems when multiple requests are in
place (e.g., Fischhoff, Slovic, & Lichtenstein, 1979).

Experiment 1: Assessment Method

The previously described two-stage method of eliciting proba-
bility judgments is not the only available method. For example,
Ronis and Yates (1987) assessed probabilities in two ways. First,
they used the previously discussed standard method of requesting
the person to choose the answer he or she felt was correct, and then
they provided a 50-100% probability that the answer was in fact
correct. In the second assessment method, items were initially
circled (randomly) by the investigators, and then participants were
asked to provide a probability, ranging from 0-100%, that the
circled alternative was correct. The former method was dubbed the
choice-50 (C50) procedure, and the latter was called the no-choice-
100 (NC100) procedure by Ronis and Yates.

The first experiment here varied the assessment procedures in
much the same way as in the Ronis and Yates (1987) research. The
ASM and ERM make opposing predictions about how overconfi-
dence will differ in these two procedures, thus providing a direct
test. Specifically, the ASM predicts that overconfidence will be
reduced for the NC100 task, whereas the ERM predicts that it will
be amplified. The reasoning behind these predictions is described
as follows.

According to the ASM, a relatively constant internal probability
arises from repeated exposure to a cue ensemble, and then a
probabilistic response rule is applied. Because responses are prob-
abilistic in the C50 task, the respondent sometimes selects the less
likely option. In these cases, the respondent has less than an even
chance of being correct, but he or she must report a confidence
level of at least 50%. Thus, such trials cause the respondent’s
judgments to exhibit overconfidence on the whole. But if the
judge’s task is to report a probability that the patient has Trebitis,
without first indicating a choice, the respondent would render a
judgment that directly reflects the experienced degree of activation
(see Shanks, 1991). The researcher could then derive choices by
applying a threshold response rule to the respondent’s judgments
(see Figure 1). This procedure eliminates the choice process,
effectively bypassing the probabilistic response. Because overcon-
fidence results largely from the probabilistic response rule, bypass-
ing the stage in which the rule applies should substantially reduce
overconfidence (see Appendix A for a more formal derivation).

A study by Neimark and Shuford (1959) lends empirical support
for this proposal. In a standard probability learning task, those
researchers had participants make predictions regarding a deck of
cards that they turned up one after another. One group of partici-
pants predicted which of two letters would appear on each trial.
Another group predicted similarly and also estimated the percent-

5Tt also provides an alternative explanation of probability matching
behavior. For example, suppose a respondent has accumulated 100 exem-
plars, on 70 of which one particular event occurred. If the judge bases a
subsequent choice on the retrieval of one past trial, then he has a 70%
chance of saying that the event will occur, that is, the judge probability
matches.
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indicated disease. The second method was the NC100 assessment proce-
dure, in which participants were asked to provide a probability, ranging
from 0—100%, that each patient had the focal disease, Trebitis.

Procedure

The experiment was conducted entirely via computer. The program first
introduced the scenario and initial instructions to the participant. These
instructions were very similar to those used by Yates et al. (1998) and
emphasized several points, including (a) the need to learn the relations
between the symptoms and diseases over time in order to make good
diagnoses; (b) that each symptom may or may not be useful in distinguish-
ing Trebitis from Philiosis; and (c) that the diagnostic process is inherently
probabilistic rather than deterministic, unlike what the participant might
have expected in a psychology experiment.

Participants were also given specific instructions concerning use of
the probability scale. Participants in the C50 condition were instructed
to adhere to the following conventions when stating their likelihood
judgments:

(A) 50% should mean that the patient is just as likely to have Trebitis
as Philiosis.

(B) 100% should mean that the patient is absolutely certain to have the
disease you indicated for your first judgment.

(C) Increasing probabilities between 50% and 100% should corre-
spond to increasing degrees of certainty that the patient’s true medical
condition is as you stated.

Participants in the NC100 condition were told to adhere to these conven-
tions:

(A) 50% should mean that the patient is just as likely to have Trebitis
as Philiosis.

(B) 100% should mean that the patient is absolutely certain to have
Trebitis, and 0% should mean that the patient is absolutely certain to
have Philiosis.

(C) Increasing probabilities between 50% and 100% should corre-
spond to increasing degrees of certainty that the patient has Trebitis
rather than Philiosis.

(D) Decreasing probabilities between 50% and 0% should correspond
to increasing degrees of certainty that the patient has Philiosis rather
than Trebitis.

On each trial, the participant (a) was presented with a new patient, who was
identified by two initials and that patient’s symptom profile; (b) indicated
a probabilistic differential diagnosis according to either the C50 or NC100
procedure, as described above; and (c) received feedback about what was
“eventually determined” to be the patient’s actual condition. Participants
made diagnoses for 70 patients during an initial block of trials and then
returned to diagnose another 70 patients in a second block, 2 hr later.
Analyses focus on Block 2, because those judgments are of primary
importance for the hypotheses under consideration.

Results and Discussion

In the analyses described below, choices were derived from the
NC100 data by a cutoff rule, such that probabilities greater than
50% were mapped to predictions for the focal disease and those
less than 50% were mapped to predictions for the nonfocal alter-
native. Choices were randomly selected for judgments of exactly
50%. Also, probability judgments that patients actually had the
chosen diseases were derived from the C50 data by taking judg-
ments “as is” when the focal disease was chosen and by subtract-
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ing judgments from 100% when the nonfocal alternative was
selected. Overconfidence or underconfidence was indexed, as is
the norm, through the following bias statistic:

Bias = mean probability judgment — proportion correct.  (14)

Positive values for bias indicate overconfidence, and negative
values indicate underconfidence.

Model Simulations

The behavior of the two models under the ecology described in
Experiment 1 was simulated through Monte Carlo methods (1,000
simulated participants per data point) in order to confirm the
previously described predictions for the current experiment. Plau-
sible ranges of the parameters were used to show that the predic-
tions are not particularly sensitive to the parameter values chosen.

ASM. Figure 2 graphically illustrates the ASM’s behavior
under the ecology described in Experiment 1. The simulation
assumed beta values ranging from .025-.125, which is a plausible
range (Estes, Campbell, Hatsopoulos, & Hurwitz, 1989; Nosofsky,
Kruschke, & McKinley, 1992). The simulation further assumed
three values for k that span its range of 0—1. One should observe
that, as anticipated, proportion correct is larger and overconfidence
is lessened when probabilities are directly reported rather than
when a choice is first made. Also note that there still exists
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Figure 2. Simulated proportion correct and bias (overconfidence) accord-
ing to the activation strength model, as a function of assessment method
and learning rate in Experiment 1. Respondent chooses first and then
reports 50-100% confidence that the choice is correct in the choice-50
(C50) task (C50 curve is denoted by O). Respondent reports 0-100%
probability that a specified event will occur in the no-choice-100 (NC100)
task (NC100 curve is denoted by A); the resulting probabilities are con-
verted to corresponding choices and confidence values.
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overconfidence, even with direct reporting of the probability judg-
ments. Subsequent analyses indicate that this bias is due to trial-
by-trial variations in P, which result from learning. Such effects
are not further discussed here because our primary focus is on the
probabilistic response rule.

ERM. Figure 3 illustrates graphically the ERM’s behavior
under the ecology described in Experiment 1. The simulation
assumed five values of s and three levels of vy, ranging from 0-1.
One should observe that, as anticipated, proportion correct is
unchanged and overconfidence increases when probabilities are
directly reported rather than when a choice is first made.

Bias and Components

Table 1 shows the means and standard deviations of confidence,
proportion correct, and bias for each condition. The C50-condition
participants exhibited less confidence than the NC100-condition
participants, but they achieved a slightly higher proportion of
correct responses, #(84) = —2.47, p = .015, and #(84) = 2.01,p =
.048, respectively. Participants in both conditions exhibited
marked positive bias, that is, overconfidence. Also, the positive
bias was much greater in the NC100 condition than in the C50
condition, #(84) = 3.66, p = .0005. Both of these results are
opposite to the predictions of the ASM, but the confidence results
support the ERM’s predictions. The ERM, however, predicted that
there would be no difference for proportion correct. This discrep-
ancy is discussed below and is empirically addressed in Experi-
ment 2.
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Figure 3. Simulated proportion correct and bias (overconfidence) from
the exemplar retrieval model, as a function of assessment method and
similarity in Experiment 1. Choice-50 curve is denoted by O; No-choice-
100 curve is denoted by A.
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Table 1
Means (and Standard Deviations) for Confidence, Proportion
Correct, and Bias for Experiment 1

Proportion
Condition N Confidence correct Bias
NC100 45 79 (.108) .57 (.078) .22 (.128)
C50 41 .73 (.100) .60 (.074) .13 (.093)
Note. NCI100 = no-choice-100; C50 = choice-50.

Judgment Given Symptom Pattern

Table 2 shows for each symptom pattern: (a) the objective
probability of Trebitis for each symptom pattern, as defined under
the ecology description; (b) the proportion of times Trebitis was
chosen by participants in each condition; and (c) the mean prob-
ability judgments of Trebitis. Choice proportions from both con-
ditions appear to overshoot the objective probability at the lowest
values and to undershoot at the highest values rather than match
them. The choice proportions are not closer to optimal (i.e., nearer
to 0 and 1) for the NC100 condition than for the C50 condition,
contrary to the predictions of the ASM. The mean probability
judgments exhibit the same pattern of overshooting the objective
probability at the lowest values and undershooting at the highest
values. This pattern may reflect that judgments are often inconsis-
tent (cf. Erev, Wallsten, & Budescu, 1994). This result is addressed
further in the General Discussion, but we note here that it is not
diagnostic because both models anticipate such inconsistency,
although by different mechanisms.

Summary

The findings of Experiment 1 provide some support for the
ERM'’s account of category learning overconfidence. As proposed
by that model, participants were less overconfident in the C50 task
than in the NC100 task. And this finding was exactly opposite to
the expectations of the ASM, thereby providing evidence against
its account of overconfidence. Further evidence against the ASM’s

Table 2
Choice Proportions and Mean Probability Judgments
for Experiment 1

Prop.(choose T) P'(T)
Symptom pattern P(T) Cs0 NC100 C50 NC100
H .10 21 28 31 .35
H,S 20 34 .38 .40 42
N,H .40 31 .46 40 47
S .50 .50 49 49 .50
N,H, S .60 .67 .76 .62 72
N .80 .66 .65 .60 .62
N, S 90 75 .69 67 .64

Note. P(T) = objective probability of the target disease (“Trebitis”),
given the ensemble; Prop.(choose T) = proportion of times Trebitis was
chosen; P'(T) = mean probability judgment of Trebitis; N = runny nose;
H = swollen hands; S = sore throat; C50 = choice-50; NC100 =
no-choice-100.
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validity was that choices derived by a cutoff rule from the prob-
ability judgments given by participants in the NC100 condition
resembled those of the C50 group quite closely. This finding is
contrary to that model’s assumption that choice is essentially a
probabilistic function of internal likelihood.

Although the Experiment 1 overconfidence results were pre-
dicted by the ERM, there are difficulties with the interpretation. A
limitation is that the C50-condition participants achieved a higher
proportion of correct responses than did the NC100-condition
participants. This is problematic because of what are often called
hard-easy effects (Lichtenstein & Fischhoff, 1977; Suantak,
Bolger, & Ferrell, 1996). These effects imply that less overconfi-
dence should be expected when a higher proportion of correct
responses is achieved, and the difference in proportion correct
found here might well stem from differences in learning. Specif-
ically, the C50 group was prompted to retrieve information more
times on each trial than the NC100 group, and leaming is often
assumed to occur during retrieval (Gillund & Shiffrin, 1984). So,
it might be argued that the overconfidence results simply reflect
that more learning occurred in the C50 condition.

Another possible alternative to the exemplar retrieval interpre-
tation of the overconfidence result is that there is a linguistic
demand to report a more extreme probability in the absence of a
categorical judgment. For example, the respondent may feel that
stating “Trebitis” along with 60% confidence is more informative
than stating a probability judgment of 60% that a patient has
Trebitis. If so, the respondent might be compelled by the conver-
sational rule of informativeness (cf. Grice, 1975) to report a
probability slightly greater than 60% in the latter case. In principle,
this linguistic phenomenon could be operating at all points along
the scale. These issues were addressed in Experiment 2.

Experiment 2: Assessment Method and Recall

The results of Experiment 1 support the ERM’s account of
overconfidence, but several interpretational issues remain. Hence,
the primary purpose of Experiment 2 was to provide more direct
evidence for the ERM’s explanation for the effect of assessment
method on overconfidence. To that end, we made several modifi-
cations to the basic design of Experiment 1.

One possible alternative explanation for the assessment effect
was differential learning. In Experiment 2, participants in all
conditions simply classified patients without giving confidence
judgments in Block 1, and no participants received feedback
during Block 2. Thus, learning conditions were equalized in the
present experiment.

Another possibility was that participants in the NC100 condition
felt it necessary to report more extreme probability judgments than
did participants in the C50 condition, as described above. This
response-bias interpretation was dealt with in two ways. First, a
monetary bonus system that encourages respondents to report
candidly was included. Second, a “recall” condition was added in
order to directly test the exemplar retrieval account. Specifically,
after presentation of each patient, participants in the recall condi-
tion were instructed to recall as many similar patients as possible.
They were then prompted for a diagnosis, according to the NC100
procedure. If the assessment effect is due to increased retrieval, as
suggested by the ERM, overconfidence should be reduced for this
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group, as in the C50 condition. However, this manipulation does
not change the conversational demand because no more informa-
tion is being communicated than in the NC100 “control” condition.

One other possibility, not previously discussed, is that people
simply attend more completely to the symptoms in the C50 con-
dition. This might happen because the second prompt induces
people to reexamine the symptom profile. Such an attention effect
might be expected according to the ERM through the similarity
parameter, independent of the specific key assumption that abbre-
viated retrieval drives overconfidence. Any effect for the recall
condition could also be interpreted as attentional in nature. In order
to control for this possibility, we added an “encoding” condition
wherein participants were instructed to pay close attention to the
symptoms on each trial, in place of receiving the recall instruction
or choice demand. Participants in this condition also made their
judgments according to the NC100 procedure. This condition
obviously controls for effects of attention.

The ERM predicts that the basic assessment method effect will
be replicated under the more stringent learning conditions of the
present experiment. Furthermore, because participants in both the
C50 and recall conditions were prompted twice to retrieve infor-
mation, the model predicts that similar levels of overconfidence
will be observed in those groups.

Method
Participants

Study participants were 159 undergraduates enrolled in an introductory
psychology course at the University of Michigan. Experimental participa-
tion was part of their course requirement.

Cover Story and Ecology

The cover story was exactly the same as in Experiment 1. However, the
ecology was changed slightly, as described below.

Base rates and likelihoods. The base rate for both Trebitis and Philio-
sis was .50. The base rate for both symptoms N and H was .67, and the base
rate for symptom S was .50. The likelihoods of N, H, and S given Trebitis
were .44, .89, and .58, respectively.

Predictability. A logistic regression model describing Block 1 was
created according to Equation 13. In this case, Y was the following linear
combination of indicator variables for the presence and absence of the
symptoms:

Y= -0.48 — 1.62N + 1.62H + .968. 15)

The proportion of variance explained by the model was R = .25. Also,
the percentage of correct diagnoses achieved by the model’s judgments
applied to Block 2 was 73%.

Design

There were four between-participants conditions in Experiment 2:
NC100 (control), NC100/encode (encode), NC100/recall (recall), and C50
(see Figure 4). All factors were introduced and no feedback was given in
Block 2. The NC100 assessment method, described in Experiment 1, was
used in the first three conditions. Participants in the control condition
simply made judgments according to the NC100 procedure, as described in
Experiment 1. Participants in the encode condition were presented with the
following instruction for 3 s at the time the symptom profile was displayed,
but prior to making their judgments: “Carefully examine this patient’s
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Condition
Subject
| reports Control (NC100)
probability of T
Encode Subject
Ea R reports Encode (NC100)
instruction .
Patient profile probability of T
presented
Retrieval Subject
-T Retieval o 1 ports Recall (NC100)
instruction -
probability of T
Subject Subject reports
-»| chooses —>| probability €50
TorP correct

Figure 4. Trial-by-trial procedure for each condition in Experiment 2. T
is the target category (Trebitis), and P is the alternative (Philiosis).
NC100 = no-choice-100; C50 = choice-50.

symptom profile.” Participants in the recall condition were presented with
this instruction: “Carefully examine this patient’s symptom profile. Try to
bring to mind all of the patients you saw previously with symptoms like
these, including the disease each had.” Participants in the fourth condition
made judgments according to the CS0 procedure, as described in Experi-
ment 1.

Procedure

The procedure was very similar to that of Experiment 1; the scenario and
initial instructions were essentially identical. During Block 1, participants
diagnosed 45 patients, took a short break during which they engaged in an
unrelated activity, and then diagnosed another 45 patients, for a total of 90
patients. Participants in all conditions made only choices during Block 1;
no probability judgments were rendered. A second set of instructions was
presented just before the start of the Block 2 trials. These instructions
informed participants of any procedure changes they would encounter in
their diagnostic routine (i.e., specific condition instructions and corre-
sponding probability judgment conventions). Participants in the recall
condition were also given the following information about what they might
reasonably expect from their recall attempts:

You may feel that it is difficult or impossible to remember all of the
patients you saw exactly, but even though you probably cannot
identify them, you can remember some bits about them, including
which of the two diseases they had.

The participants were also informed that a formula would be used to
evaluate their judgments from the upcoming, final phase, and that their
score, along with the average scores of their peers, would be sent to them
at the end of the semester. They also learned that the participants with the
four best accuracy scores would each receive a $20 bonus prize. This was
intended to encourage effort and accuracy on the participants’ part. The
instructions emphasized that it was in the participant’s best interest to be
perfectly candid in reporting his or her true judgments to obtain their
highest possible score. And the point was belabored by saying that it would
hurt the participant’s accuracy score to report any value other than his or
her true belief. In Block 2, participants diagnosed another 30 patients
according to one of the four conditions previously described. Both blocks
of diagnoses were rendered within a single hour. Analyses focus on the
second block, because only those judgments bear on the hypotheses under
consideration.
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Results and Discussion

Because feedback was not provided during Block 2 of this
experiment, no actual outcome values existed for computing pro-
portion correct and bias. So, the objective conditional probabilities
of Trebitis were used to determine the probability that each “Trebi-
tis” response would be correct over lots of possible sets of gener-
ated outcomes, and the objective conditional probabilities of
Philiosis were similarly used to determine probabilities that each
“Philiosis” response would be correct. These values were then
averaged for each person to obtain the expected proportion of
correct responses. Overconfidence or underconfidence were in-
dexed through the following expected bias statistic:

E[Bias] = mean probability judgment — E[proportion correct]. (16)

Model Simulations

The behavior of the two models was simulated through Monte
Carlo methods under the ecology described in Experiment 2 in
order to confirm the previously described predictions for the
current experiment. The parameter settings were just as in Exper-
iment 1 and again were intended to show that the model predic-
tions are quite robust.

ASM. Figure 5 graphically illustrates the ASM’s behavior
under the ecology described in Experiment 2. One should observe
that, as in the Experiment 1 ecology, proportion correct is larger
and overconfidence is lessened when probabilities are directly
reported rather than when a choice is first made. Also, it is noted
that predictions for all of the NC100 groups are the same.
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Figure 5. Simulated proportion correct and bias (overconfidence) from
the activation strength model, as a function of assessment method and
learning rate in Experiment 2. Choice-50 curve is denoted by O; No-
choice-100 curve is denoted by A.
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ERM. Figure 6 graphically illustrates the ERM’s behavior
under the ecology described in Experiment 2. One should observe
that, as in the Experiment 1 ecology, proportion correct is un-
changed and overconfidence is greater when probabilities are
directly reported rather than when a choice is first made. Further-
more, the pattern of results is essentially equivalent when the
choice prompt is replaced by a direct retrieval prompt. If the
encode manipulation were to have any effect, it would be to reduce
the value of the similarity parameter, s, so that proportion correct
would be increased and overconfidence reduced.

Expected Bias and Components

Table 3 shows the means and standard deviations of confidence,
proportion correct, and bias for each condition. The mean expected
proportions of correct answers were essentially identical across
conditions, F(3, 155) = .074, p = .974.

An analysis of variance (ANOVA) revealed a significant main
effect for mean confidence, F(3, 155) = 3.31, p = .022. Confi-
dence was nearly equivalent for participants in the control and
encode conditions, #77) = 0.11, p = .915. Those participants
were more confident than participants in the recall condition,
#(117) = 2.14, p = .035, and also more confident than participants
in the C50 condition, #(117) = 2.83, p = .005. Finally, participants
in the recall and C50 conditions were about equally confident,
#77) = 0.69, p = 491.

An ANOVA revealed a significant main effect for bias, F(3,
155) = 2.67, p = .050. Overconfidence was nearly equivalent for
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Figure 6. Simulated proportion correct and bias (overconfidence) from
the exemplar retrieval model, as a function of assessment method, whether
an extra retrieval prompt was included, and similarity, in Experiment 2.
Choice-50 curve is denoted by O; No-choice-100 curve is denoted by A;
retrieval is denoted by O.

Proportion
Condition N Confidence correct Bias
Ctl./NC100 39 .79 (.093) .61 (.096) .18 (.125)
Enc./NC100 40 .78 (.102) .60 (.109) .19 (.122)
Rec./NC100 40 .75 (.086) .61 (.089) .14 (.066)
C50 40 74 (.092) .61 (.116) A3 (117)
Note. Ctl. = control; Enc. = encode; Rec. = recall; NC100 = no-choice-

100; CS50 = choice-50.

participants in the control and encode conditions, #77) = 0.26,
p = .795. Those participants were more overconfident than par-
ticipants in the recall condition, #(117) = 2.08, p = .040, and also
more overconfident than participants in the C50 condition,
#(117) = 2.30, p = .024. Finally, participants in the recall and C50
conditions were about equally overconfident, #(78) = 0.50, p =
.618. This pattern of results is just as anticipated by the ERM.

Judgment Given Symptom Pattern

Table 4 shows for each symptom pattern: (a) the objective
probability of Trebitis; (b) the proportion of times Trebitis was
chosen by participants in each condition; and (c) the mean prob-
ability judgments of Trebitis by condition. The group choice
proportions matched the objective probabilities to a very rough
approximation. As in Experiment 1, the mean probability judg-
ments overshot the objective probability at the lowest values and
undershot at the highest values.

Summary

In this experiment, the assessment method effect found in Ex-
periment 1 was replicated under more stringent conditions. And
the similarity in average overconfidence levels between the recall
and C50 conditions increases the plausibility that recall drives that
effect. Finally, no reduction in overconfidence was found in

Table 4
Choice Proportions and Mean Probability Judgments
for Experiment 2

Prop.(choose T) P'(T)

Symptom

pattern P(T) Ct. Enc. Rec. CS50 Ctl. Enc. Rec. CS50
N 07 19 25 24 26 26 .29 31 32
N, S 27 .28 38 30 32 35 40 35 36
N,H 47 47 56 46 45 50 54 47 47
N,H, S 53 54 49 59 48 55 48 59 47
H 73 56 M 65 76 60 64 63 64
H, S 93 80 78 8 77 71 69 73 .68
Note. P(T) = objective probability of the target disease (“Trebitis™),

given the ensemble; Prop.(choose T) = proportion of times Trebitis was
chosen; P’'(T) = mean probability judgment of Trebitis; Ctl. = control;
Enc. = encode; Rec. = recall; N = runny nose; H = swollen hands; S =
sore throat; C50 = choice-50.
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the encoding condition, effectively ruling out attention as an
explanation.

One alternative explanation of the results that was not explicitly
controlled for here suggests that people do not actually follow the
retrieval instruction, but the delay that is incurred prompts them to
shift to a more analytical mode of deliberation (e.g., Hagafors &
Brehmer, 1983). An immediate difficulty for this interpretation is
that analytical modes have not generally been associated with
reduced overconfidence (e.g., Paese & Sniezek, 1991; Wilson &
LaFleur, 1995). For example, Wilson and LaFleur (1995) found
that analyzing reasons for acting or not acting in a certain way led
to both a decrease in predictive accuracy and an increase in
confidence that the predicted behavior would occur (also see
Sieck, Quinn, & Schooler, 1999). Furthermore, according to the
mode proposal, the specific instruction should not be relevant; it
should be the associated delay that influences the shift. Because
the same delay is used for the encoding condition as for recall, the
encoding condition at least serves as an indirect control for the
mode explanation.

The pattern of results is quite consistent with the proposal that
people store exemplars during learning and then retrieve only
small portions of them in order to arrive at their judgments.
Because individual records of past experiences simply do not exist
according to the ASM, it does not anticipate the recall instruction
effect. And as discussed in Experiment 1, that model predicts the
opposite effect of assessment method. Hence, Experiment 2 pro-
vides no evidence that the ASM’s explanation of overconfidence is
accurate.

Experiment 3: Recall Prior to Choice

In Experiment 2, instructing participants to recall previously
seen patients prior to reporting probability judgments was as
effective at reducing overconfidence as an initial prompt for
choice. The principal objectives of Experiment 3 were to replicate
the recall effect and to determine whether such an instruction could
reduce overconfidence over and above a demand to choose. The
ERM predicts that overconfidence will tend to be further reduced
as more and more exemplars are retrieved (see Appendix C for a
derivation), so combined choice and recall demands are predicted
to reduce overconfidence more than either demand alone. To
determine this, we had control participants in this experiment
follow the C50 procedure. Experimental participants performed
the same task but were also instructed to recall as many similar
patients as possible, prior to offering their diagnoses. In addition,
including these multiple prompts to retrieve information should
provide some idea of how effective mere recall can be as a
debiasing strategy.

Method

Farticipants

Study participants were 56 undergraduates enrolled in an introductory
psychology course at the University of Michigan. Experimental participa-
tion was part of their course requirement.
Cover Story and Ecology

The cover story and ecology were exactly the same as in Experiment 2.
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Design

The independent variable in this experiment was the recall instruction
manipulation, with the factor being introduced in Block 2. Participants in
the C50/recall (recall) condition were presented with the following instruc-
tion for 5 s at the time the symptom profile was displayed, but prior to
making their judgments: “Try to bring to mind all of the patients you saw
previously with symptoms like these, including the disease each had.” No
such instruction was given to participants in the C50 (control) condition.

Procedure

The procedure was essentially the same as that of Experiment 2. One
difference was that participants in both conditions made judgments through
the C50 procedure during the Block 1 trials because they would all follow
that same procedure in Block 2. A second difference was that the retrieval
instruction in Experiment 3 appeared on a separate screen from the judg-
ments and was displayed for 5 s rather than 3 s. These changes were made
in an attempt to strengthen the effectiveness of the procedure.

Results and Discussion

Model Simulations

The Monte Carlo-simulated behavior of the ERM is shown in
Figure 7 under conditions consistent with Experiment 3 to illus-
trate the effects of increasing the number of exemplars retrieved on
proportion correct and bias. The parameter settings were generally
like those of Experiment 1. The only difference is that the number
of retrieved exemplars at the time of choice was varied to illustrate
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Figure 7. Simulated proportion correct and bias (overconfidence) from
the exemplar retrieval model, as a function of number of exemplars
retrieved and similarity in Experiment 3. One exemplar retrieved is denoted
by O; three exemplars retrieved is denoted by ¢ ; five retrieved is denoted
by X.
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a range of predictions in the current experiment. In all cases, one
more exemplar is retrieved at the time confidence is reported. One
should observe that proportion correct increases somewhat and
overconfidence decreases as the number of retrieved exemplars
increases. No new simulations were conducted for the ASM be-
cause it does not predict any differences in the current experiment.

Expected Bias and Components

Table 5 shows that the participants who received the recall
instruction exhibited slightly less confidence than participants who
did not receive the instruction, although the difference is not
statistically significant, #(54) = —1.11, p = .137 (one-tailed).
Also, in the recall instruction participants achieved a slightly
higher proportion correct, although the difference is only margin-
ally significant, #(54) = 1.52, p = .067 (one-tailed). However,
these small effects on the components combined so that partici-
pants in the recall condition exhibited less overconfidence than
those in the control condition, #54) = —2.15, p = .036. Yet, as
can be seen in Table 5, overconfidence in the recall condition
was still significantly positive, #(27) = 2.23, p = .035, suggest-
ing that multiple retrieval demands do not readily eliminate
overconfidence.

Judgment Given Symptom Pattern

Table 6 shows for each symptom pattern: (a) the objective
probability of Trebitis; (b) the proportion of times Trebitis was
chosen by participants in each condition; and (c) the mean prob-
ability judgments of Trebitis by condition. Choice proportions
matched objective probabilities to a very rough approximation. As
in the previous experiments, the mean probability judgments over-
shot the objective probability at the lowest values and undershot at
the highest values.

Summary

Experiment 3 provided more direct support for the proposed
mechanisms of exemplar retrieval as contributors to overconfi-
dence. Specifically, an instruction to retrieve many exemplars
prior to choice led to a reduction in overconfidence, over and
above the effect of assessment method. It also suggested that
instructions to retrieve more information than is usual generally
will be insufficient for achieving completely unbiased confidence
assessments. The pattern of results is, on the whole, well accounted
for by the ERM. Further issues are addressed in the General
Discussion.

Table 5
Means (and Standard Deviations) for Confidence, Proportion
Correct, and Bias for Experiment 3 :

Proportion
Condition N Confidence correct Bias
Ctl./C50 28 73 (.109) .59 (.124) .14 (.131)
Rec./C50 28 .70 (.115) .64 (.098) .06 (.143)
Note. Ctl. = control; Rec. = recall; C50 = choice-50.
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Table 6
Choice Proportions and Mean Probability Judgments
for Experiment 3

Prop.(choose T) P'(T)
Symptom pattern P(T) Recall Control Recall Control
N 07 19 29 31 32
N, S 27 16 27 37 34
N, H 47 34 48 43 46
N, H, S 53 27 .54 41 53
H 73 76 1 61 .61
H, S 93 .84 .69 .70 67

Note. P(T) = objective probability of the target disease (“Trebitis”),
given the ensemble; Prop.(choose T) = proportion of times Trebitis was
chosen; P'(T) = mean probability judgment of Trebitis; N = runny nose;
H = swollen hands; S = sore throat.

General Discussion

The results of the three experiments reported here provide
encouraging support for mechanisms of exemplar retrieval as
contributors to overconfidence in category learning. An ASM
account of overconfidence was not supported. Experiment 1
showed that overconfidence was greater when judgments were
prompted in two stages, consistent with the idea that retrieval is
induced at each stage. Experiment 2 replicated the effect under
more stringent conditions and further showed that reductions in
overconfidence are very similar for choice and for prompting
retrieval directly, thus increasing the plausibility that increased
retrieval drives the assessment method effect. Experiment 3 rep-
licated the finding that retrieval reduces overconfidence and also
found that a stronger retrieval manipulation did not eliminate
overconfidence completely.

It is important to note that the failures of the ASM in this study
do not imply that connectionist models cannot be used to represent
information in an LTS. It may be possible, for example, to create
a model with a connectionist representation of information in LTS
that constructs exemplars at the time of retrieval. The constructed
exemplars would then compose the retrieved information rather
than activation signals, as in the ASM. Such a model would clearly
share the critical assumption of the ERM that exemplars are
retrieved and used in judgment. The ASM and ERM are parsimo-
nious instantiations, at least conceptually, in that each proposes
that stored and retrieved information take the same form (but see
Estes, 1986, for an alternative view on model testing).

Limitations and Extensions

In this section, some limitations and possible extensions of the
ERM are discussed.

Memory Strength

The ERM as presented in this article assumes that all presented
exemplars are stored in memory equally. We view this as a
simplification and suspect that it would be worthwhile to explore
alternative formulations such as allowing exemplars to reside in
memory with differing strengths. Such formulations would allow
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the model to deal with factors such as the amount of time spent
studying each case and the recency of presentation. Recency
effects are particularly interesting because they may point toward
another potential reason that retrieval is abbreviated. Specifically,
abbreviated retrieval of recent events can be adaptive in autocor-
related ecologies (cf. Real, 1991). And recency effects were gen-
erally reported in the early probability-learning literature (e.g.,
Estes, 1957). Nosofsky et al. (1992) developed a recency-sensitive
model by assuming that exemplar memory strength decays expo-
nentially from the time of presentation. Busemeyer and Myung
(1988) found that recency effects decreased as the number of
presented cases increased, suggesting that an alternative formula-
tion might be needed. This issue requires further investigation.

Variable Amounts of Retrieval

In the current rendition of the ERM, exactly one exemplar was
assumed to be retrieved at each judgment prompt. This assumption
was implicitly made by Medin and Schaffer (1978), and by Nosof-
sky (1986), and was explicitly made by Logan (1988) in his
instance theory of automaticity. Nosofsky and Palmeri (1997) have
recently developed an exemplar-based random walk model to
predict categorization reaction times based on these earlier ideas,
but which proposes that classifications rely on relatively small,
random numbers of retrieved exemplars. This proposal needs to be
further explored and tested in the context of overconfidence
phenomena.

Retrieval Primacy

The ERM as described here tacitly assumes independence in
exemplar retrieval. That is, the probability of retrieving an exem-
plar that points toward the target category on a given trial does not
depend on the outcomes of exemplars previously retrieved on that
trial. An alternative possibility is that retrieval is biased toward the
categories of earlier retrieved exemplars. Some support for this
idea comes from studies using paired associates. For example,
Rundus (1973) found that presenting some of the items from a
free-recall list to study participants interfered with their retrieval of
the remaining items. This suggests that facts retrieved initially may
serve as cues for further retrieval. The adoption of facts retrieved
early in the process as cues for subsequent retrieval will, of course,
foster dependencies between the facts ultimately retrieved. It is an
open question as to whether such dependencies exist in the re-
trieval of exemplars in classification learning tasks.

Implications for Alternative Models
of Likelihood Judgment

Although as mentioned in the introduction, models of category
learning formed the theoretical point of departure for studying
overconfidence in the specific task under investigation, the results
have implications for several extant models of confidence judg-
ment, as described below.

Probabilistic Mental Models (PMM)

The theory of PMM (Gigerenzer, Hoffrage, & Kleinbélting,
1991) was developed in the context of general knowledge ques-
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tions but might be even more descriptive of judgments in category
learning tasks. In PMM, cues are related to a target category
through conditional probabilities that serve as cue validities (cf.
Reed, 1972; Rosch & Mervis, 1975). The respondent chooses the
altermative that is indicated by the cue with the highest validity,
and the confidence value reported is equivalent to that validity.
Because cue validities are assumed to equal their ecological coun-
terparts, the model predicts that people are generally unbiased
assessors of confidence. Overconfidence arises in standard general
knowledge tasks because experimenters tend to select items that
are unrepresentative of their respective populations. Specifically,
the items tend to trick the respondent into thinking they are easier
than they actually are.

Since the original statement of the PMM theory, considerable
evidence has been levied against its explanation of overconfidence,
typically by showing that overconfidence persists even with rep-
resentative sampling of items (e.g., Brenner, Koehler, Liberman, &
Tversky, 1996). The current study shows that as well. In addition,
the current research provides more direct evidence against PMM.
Specifically, PMM assumes that under conditions of representative
sampling, people always choose the most likely option. Hence, it
cannot account for probability matching. As shown in Experi-
ment 1, assuming that choice is a probabilistic function of internal
probability is not a feasible solution. That result provides signifi-
cant problems for any theory, including PMM and the ASM, that
assumes people operate primarily as “intuitive statisticians” (Peter-
son & Beach, 1967).

Stochastic Models

Erev et al,, (1994) defined a class of stochastic models of
probability estimation and showed by simulation that random error
in the judgment process was sufficient to produce overconfidence
as revealed by calibration curves (where the judgment categories
are plotted against the proportion correct given each judgment
category). In the same simulations, the error also produced con-
servatism, that is, average probability judgments that overshoot
objective probabilities below 50% and undershoot objective prob-
abilities above 50%. Soll (1996), as well as Juslin, Olsson, and
Bjorkman (1997), have extended the overconfidence results by
showing that random error or inconsistency in the judgment pro-
cess can also produce overconfidence as measured by the bias
statistic used here. Although Erev, Wallsten, and Budescu’s article
did not attempt to specify the processes that lead to inconsistent
judgments, it may well prove to be a watershed in the kinds of
mechanisms that are brought to bear on overconfidence phenom-
ena. For example, in the present study, we extended preexisting
models of category learning to account for confidence judgments
in very direct ways. Specifically, we did not build mechanisms for
systematic overconfidence into the models. Overconfidence arises
from both models principally because of stochastic error, although
the specific mechanisms that lead to inconsistent judgments differ
between the two models. Hence, the current findings support the
conclusion that stochastic error is sufficient to produce overcon-
fidence and expand that conclusion by exploring cognitive models
that suggest points in the process where error might arise.
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MINERVA-DM (MDM)

Another, very recent process model for which the present results
have implications was developed by Dougherty, Gettys, and Og-
den (1999), based on earlier ideas by Hintzman (1988). These
authors’ MDM relies heavily on memory representation to account
for a variety of interesting phenomena in the judgment and deci-
sion literature. It also shares important commonalities with both
the ASM and ERM described here. MDM assumes that experi-
ences are stored as feature lists of individual episodes (“traces”)
and that likelihood judgments involve similarity computations
performed over all of the traces. Overconfidence in category
learning was among the phenomena investigated by Dougherty et
al. by simulation. In that simulation, respondents were assumed to
choose deterministically. The primary factors responsible for over-
confidence in the model were the number of traces stored and the
degrees to which those traces were intact. That is, because encod-
ing is not perfect, each trace has gaps or is degraded to some
degree. Poorly encoded experiences lead to overconfidence be-
cause of resulting random error.

This model is very much like the ERM in its assumptions about
memory representation. However, because it assumes that subjec-
tive likelihood is a function of all memory traces, MDM also
behaves much like the ASM, except that it does not use a proba-
bilistic choice rule. Hence, it does not predict probability match-
ing, and it does not anticipate the assessment method or retrieval
instruction effects found in the current experiments. Nevertheless,
it does possess sophisticated assumptions regarding storage error,
and overconfidence has been shown to follow from those premises.
Experimental tests of the assumptions still need to be performed,
however.

Argument Recruitment Model (ARM)

One other class of models that should be discussed are
argument-based models, such as the ARM recently proposed by
Yates et al. (2001) to account for general knowledge overconfi-
dence. The ARM draws on earlier ideas about the role of reasons
in judgment (Griffin & Tversky, 1992; Koriat, Lichtenstein, &
Fischhoff, 1980), but proposes distinct assumptions about how the
argument process leads to overconfidence and its cross-cultural
variations. The ARM proposes that when confronted with a gen-
eral knowledge question, a respondent (a) generates arguments that
favor or oppose each of the alternatives, (b) assesses the extent to
which the balance of the reasons favors one alternative or the
other, (c) chooses the option indicated by the balance assessment,
and (d) reports a probability judgment for the correctness of the
chosen option according to the magnitude of the balance assess-
ment. Two key principles concerning the recruitment process lead
to overconfidence: (a) only a few arguments tend to be recruited
and (b) the recruitment process is biased toward the first argument
that is generated.

Argument-based models have the potential to provide very
general accounts of overconfidence, including overconfidence in
tasks such as the physician’s described here. However, a ubiqui-
tous, tacitly held assumption in mapping these tasks onto
argument-based models is that the cues displayed (e.g., symptoms)
directly from the arguments, and some statistical measure of as-
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sociation between each cue and the target determines that argu-
ment’s strength. The evidence suggests an alternative conception,
in which the psychological association between cue and target is
indirect. In this case, the cue prompts retrieval of an exemplar, and
it is the exemplar that corresponds to an argument.

In the introduction of this article, we questioned whether the
sources of overconfidence in general knowledge and category
learning tasks were the same. The close correspondence between
the mechanisms for overconfidence proposed in the ERM and the
ARM imply that the sources might well be equivalent, or nearly so,
and particular effects found in the current study suggest that as
well. For example, the differences in overconfidence observed
according to method of elicitation parallel those found in studies of
general knowledge (e.g., Ronis & Yates, 1987; Sniezek et al.,
1990). Although amount of recall has not been directly manipu-
lated in general knowledge studies, there is indirect evidence that
it does mediate overconfidence in those tasks. Specifically, Yates
et al. (2001) had participants from three different cultures think out
loud as they responded to general knowledge questions. They
found that participants from Japan generated much longer proto-
cols than did American or Chinese respondents and also that the
Japanese were the least overconfident. Although the correlation is
compelling, the role of recall in general knowledge overconfidence
needs to be directly tested in future research. One dissimilarity
between the effects found in general knowledge and category
learning tasks, however, is the amount of overconfidence ob-
served. Specifically, in contrast to intuitions grounded in the
“intuitive statistician” metaphor, the degree of overconfidence
found here and in the Yates et al. (1998) study was far greater than
that typically observed in studies of general knowledge. Neverthe-
less, the balance of evidence suggests that the processes underlying
likelihood judgment in these distinct tasks are very similar and that
continued study of those processes will move us toward a universal
account of overconfidence.
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Appendix A

Derivation of the Activation Strength Model’s Choice Versus No-Choice Prediction

As described in the introduction to Experiment 1, overconfidence results
in the standard C50 task primarily because of the probabilistic choice
process. However, if the judge’s task is to report a probability that the
patient has Trebitis, without first indicating a choice, the respondent would
directly report Py. The researcher could then derive choices by applying a
threshold response rule to the respondent’s judgments (see Figure 3). This
procedure eliminates the choice process, effectively bypassing the proba-
bilistic response.

To show that no overconfidence is predicted for this NC100 procedure
in the limit, suppose that input pattern j leads to T’ with probability 1, and
to the complement, 7%, with probability 1 — 4. Suppose next that the
network settles so as to give output activation A; to the input pattern j. Over
all occurrences of pattern j, the expected mean squared error prediction, £,
is

Ei=m(l —A)* + (1 — m)(~1 — A)~ (A1)
The first term arises when T is the correct answer, and the second term
arises when T° is correct. Simplifying this equation and then taking the

derivative of the expected error with respect to the activation and setting
this equal to O gives

dE,
E=2Aj+2—417j=0 (A2)
and
A+
= 2 = Py;. (A3)

We thus find that the minimum squared error for pattern j occurs when the
internal probability for that pattern is equivalent to the objective probability
(see Gluck & Bower, 1990, for a very similar argument). So, no overcon-
fidence is predicted for this procedure in the limit.

To show that overconfidence is expected for the C50 procedure, note
that overconfidence or underconfidence is typically indexed through the
following bias statistic: Bias = mean probability judgment — proportion
correct. Also, suppose for simplicity that .5 < a; < 1. Over all occurrences
of the pattern j, the bias for that pattern is

Bias; = [Pr,(Pr;) + (.5 + k(1 = P))(1 = Pp)]

= [m(Pr) + (1 — m)(1 — Pr)]. (A4)

Next, since a parameter-free derivation is desired, we let k take on its
minimum value of 0 without loss of generality. Substituting ; for P;; by
Equation A3, Equation A4 then simplifies to

Bias;= o +.5(1 —m) — o7 — (1 — m)* = (m;,— 51 — m). (AS5)

And because both terms on the right-hand side of Equation AS5 are positive,
the bias is positive, thus indicating overconfidence. Although this argument
is compelling, it relies on the ASM’s assumption that people report their
true beliefs; that is, their probability judgments directly reflect experienced
activation strength. An alternative, less restrictive, formulation might sup-
pose that some response bias is in operation. To capture this, say people
report Gr; = g(Pr;), where g( - ) is a monotonic, nondecreasing function
of internal probability. Then, recalling that we are dealing with .5 < 1, < 1
for convenience, the bias for the NC100 task is G; — ;. Following the
same derivation as above, we find that, for the C50 task,

Bias; = (Gr; — m)m; + (m; — .5)(1 — m). (A6)

Comparing these two expressions, it is clear that overconfidence will be
greater in the C50 task, so long as

Grj—m<m—.5 (A7)
and
Gr;<2m;— 5. (A8)

Examination of Equation A8 reveals that greater overconfidence will be
found in the C50 task, irrespective of any model parameter value settings,
when a; > .75. It is also apparent that for most ecological probabilities, any
response bias must be quite large for the predictions to fail (e.g., the
response bias must be greater than .15 to obtain a reversal in predictions
when m; = .65). This derivation is somewhat limited by the assumptions
needed to make it manageable, such as infinite learning and repeated
exposure to only a single pattern. We show by simulation that the predic-
tions hold under more realistic conditions.

Appendix B

Derivation of the Exemplar Retrieval Model’s Choice Versus No-Choice Prediction

According to the ERM, overconfidence results in the standard C50 task
primarily because of the abbreviated retrieval process. Retrieval abbrevi-
ation is exacerbated in the NC100 task because it contains only one prompt
for information, whereas the C50 task has two. To show this, as in the setup
for the network model derivations, suppose that input pattern j leads to T’
with probability 7; (5 < @; < 1) and to the complement, 7%, with
probability 1 — 4. To make the derivations more tractable, suppose that
the respondent is exposed only to pattern j so that 7 = a1, then d;, = 0 for
all presented exemplars and the retrieval rule (Equation 11) simplifies to

>

kET nr

P(retrieve T|j) = m = prapra =1, (B1)

kET kEP

As in Appendix A, overconfidence is measured by the difference between
the mean probability judgment and the proportion of comrect responses.
Because choice is based on the retrieval of one exemplar in the C50 task,
the proportion correct should be equivalent for the C50 and NC100 tasks.
Hence, it is sufficient to show that the mean probability judgment is lower
when based on two exemplars rather than just one. The mean probability
judgment based on one exemplar is

E[F p-1] = 11-(“’2(’;—11;)1) +(1 - 17)(7_;_(1;’_:_;{);1_))

v+ 2

EETCER (B2)
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and the mean probability judgment based on two exemplars is

Y+M+2 Yy+M+0
strend = (500 ) 270 - (g )

Y+M-(-2)

_2(7:1»0—) B3

+(1- 11')2(
which reduces to

y+4

CEDR (B4)

1
E[FC,M=2] =—=2m(1 — ‘n')(m) +
Comparing Equations B2 and B4, we find that the mean probability

judgment based on two exemplars will be less than the mean judgment
based on one exemplar when

1021
—2m(1 - m < [7—”~—u](7+2). (B5)
2vy+1) 2y+2)
Solving for y yields the inequality
4wl - m) (B6)

—_— >y,
1-47(1 —m) Y

According to Equation B6, in order for overconfidence in the C50 condi-
tion to be lower than in the NC100 condition, y should be small and the
objective probability, m, should be extreme. However, the C50 versus
NC100 result holds over the values of y so long as  is not too extreme
(i.e., for all .15 < 7 < .85). Hence, the result is quite robust. However, this
derivation is limited by the assumption of repeated exposure to one pattern,
so we also show that the predictions hold under more realistic conditions
by simulation.

Appendix C

Derivation of the ERM’s Increased Retrieval Prediction

According to the ERM, overconfidence results because of the abbrevi-
ated retrieval process. So, overconfidence ought to be diminished by
increasing the amount of information retrieved. To show this, we assume
that the respondent is exposed to only one pattern, as in Appendix B, so
that Equation B1 holds. The mean probability judgment and proportion
correct are given, respectively, by

F= E[FruSy= 0]P(Sy = 0) + E[1 — Fr\|Sy < 0]P(Sy<0) (C1)
and
¢=aP(Sy>0) + (1 — m)P(Sy<0) + .5P(Sy = 0), (C2)

where M = N + 1. The probability that S, > 0 increases toward one as N
increases. To see this, one should first note that Sy, > 0 if S,/N > 0, and
by the central limit theorem, S,/N converges to the normal pdf with mean
27 — 1 and variance 47 (1 — @)/N. So, P(Sy > 0) > 1 as N - =, By
applying this fact to the difference between Equations C1 and C2, and
noting that the mean of the personal probability is

'y+M+M(21r—1)_'y+(21r)M
2y +2M T o2y+2M

E[Frul = (C3)

we have

2w
Bias = E[Frpy) — 7 = E[Fyrys ] — 7= 5 o= 0. (C4)
N—x
That is, bias decreases to 0 as N gets very large. The fanciful assumptions,
such as infinite retrieval and repeated exposure to only one pattemn,
obviously limit the conclusions. Thus, we also use simulation to show that
overconfidence decreases with retrieval under more realistic assumptions.
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